ECE560: Computer Systems
Performance Evaluation

Lecture 14 (Reference)
Embedded Markov-Chain
Queueing Systems - Derivations

Instructor: Dr. Liudong Xing

Topics

e Transform Methods
e M/G/1, M/D/1
« GI/M/1

Solution:

— Constructing an embedded Markov
chain

— And applying z-transform and Laplace-
Stieltjes transform methods

“Embedded Markov Chain
Queueing Systems”

ECES60
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Transform Methods Transform Methods
(Review)
* Moment generating function * Goal
(MGF) To transform a r.v. into some
transformed function with a
. _ _ different domain, in which it
* Probability generating function is easier to perform operations
(PGF, z-transform) such as finding the mean, the

variance, the moments.

* Laplace-Stieltjes transform (LST)

Chapter 2.9 in Allen’s book
Preparation for Embedded

Markov chain queueing

systems
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Transform Methods Agenda
(Transform Methods)
* Example: Logarithm
— One of the first transform methods e Moment generating function
used successfully (MGF)

— Transform the problem of
multiplying 2 large numbers A and
B into the simpler problem of * Probability generating function

adding 2 numbers logA and logB. (PGF, z-transform)

log(4x B) =log A+log B e Laplace-Stieltjes transform (LST)

— To complete operation, calculating
“anti-logarithm”

A % B — elogA+logB

Multiplication = Addition




Moment Generating Function
(MGEF) (1)

Definition: the MGF of a r.v. X is defined
by w[0]=E[e™] for all real 0 such that

E[e%] is finite. Thus,

Z " p(x,) ifXis discrete
¥, 10)= {

j e f{x)dx if X is continuous

Notes:
—  Y,[0]=1
— Ar.v. X has a MGF iff all the moments of X
exist / are finite

— MGEF transforms the r.v. X defined on a sample
space into the function ‘¥, [¢] defined on some
set of real #s

Moment Generating Function
(MGF) (2)

» Properties (Theorem 2.9.1)
— Uniqueness: X and Y have the same
distribution (F, = F, ) iff ¥, [e]="Y,[e]
— Moment generating property:
* The nth moment of X :

E[Xn] — d \PXn[e] — \PX(”)[O]
ae" |,
* Hence, B
E[X] =Y, [0]

E[X*1=¥, 0]
o® = E[LX*]- E[XT =¥, [0]- (¥, '[0])
— Convolution property:

« IfXIIY,
¥, ,[01="¥,[0]-¥,[0]

ECE560



Moment Generating Function
(MGF) (3) - Hands-on Problem

» Let X be a Poisson r.v. with rate A, Find
E[X] and Var[X] using its MGF.

Agenda
(Transform Methods)

* Moment generating function
(MGF)

* Probability generating function
(PGE, z-transform)

¢ Laplace-Stieltjes transform (LST)

ECE560



Probability Generating Function
(PGF, z-transform) (1)

+ Definition: Given a non-negative integer-
valued discrete r.v. X with p.m.f of

plX =k]= plk]= p,, define the PGF of X by

g[21=E[z¥1=) pz’ = py+ piz+ p,z° +---

i=0

— Note:

z-transform (2)

» Properties (Theorem 2.9.2)

— Uniqueness
* r.v. X and Y have the same distribution (F, = F,)
iff  gxlz]l=glz]

— Moment generating property

1d"g,.[z 1 .
p,=plx=nj=L 8zl 1 oy
n dz o n!

n=0’1’2...

E[X]=gy[l]
Var[X1= gy [11+ g [11- (g [1])°

— Convolution property

gy.rzl=g,[z]-g,0z] if XY

ECE560



z-transform (3)
— Hands-on Problem

* Let X be a Bernoulli 7.v. which describes a

Bernoulli trial. Find E[X] and Var[X]
using its PGF/z-transform.

Agenda
(Transform Methods)

* Moment generating function
(MGF)

* Probability generating function
(PGF, z-transform)

» Laplace-Stieltjes transform

(LST)

ECE560



Laplace-Stieltjes Transform
(LST) (1)
Definition:

— let X be ar.v. such that p[X <0]=0 (non-negative)
then the LST of X is defined as:

X'(0)=Ly[0]="¥,[-0]=E[e "]

{ Z e p(x;) if Xis discrete

.[: e ™ f(x)dx if Xis continuous

Notes:

— For continuous X, the integralL e f{x)dx
is called the Laplace transform of the function f(x)

- IO e fix)dx s also written as J.O e "dF(x)
which is called a “stielgjes integral”

Laplace-Stieltjes Transform
(LST) (2)
» Properties (Theorem 2.9.3)

— Uniqueness
* r.v. X and Y have the same distribution (F, = F}
)iff Ly[z]=L,[z]

— Moment generating property: For 8 > 0,

*L,[0]= X "has derivatives of all orders given by:

d"X" _ { (_l)n'[:@fgxx"f(x)dx X is continuous

a9 (=D"> e™x,"p(x;) Xisdiscrete
» If E[X"]exists, then,
d"X'[0]

EX)= ()

=)' X"

E[X]=-Ly[0], E[X*]=L,[0]
— Convolution property
 if XI1Y,
(X+Y)[6] =X [01Y[0]

or L, [0]=L,[6]-L,0]

ECE560



LST (3)

— Hands-on Problem

* Let X be an exponential r.v. with
parameter A. Find E[X] and Var[X] using

its LST.

Summary of Transform Methods

» Useful transform methods: to transform a r.v.
into some transformed function with a
different domain, in which it is easier to
perform operations such as finding the
mean, the variance, the moments.

— Moment generating function (MGF)

v [61=E[e™] and E[X"]=y{"[0]

— Probability generating function (PGF/z-
transform/Generating function)
* Non-negative integer-valued discrete r.v.s
gx[z]=E[z"] and E[X]=g,[l],
Var{X]= g, [+ gx[1]-(gx[1])’

— Laplace-Stieltjes transform (LST)

* Non-negative r.v.s

— T — _ox * unique
X [0]—'//,\'[ 0]=E[e™ ] and * MGP
E[X"]=(=1)" X *"[0] * convolution.

ECE560
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Topics
M/G/1 Queueing Systems

e Transform Methods

« M/G/1, M/D/1 * Assume
. GI/M/1 — Poisson arrival process with rate A

— QGeneral service time distribution with

« different customers have independent

Solution: service times
— Constructing an embedded Markov * E[s] and E[s?] exist ( in order to calculate
chain L,W)

— And applying z-transform and Laplace-
Stieltjes transform methods

“Embedded Markov Chain
Queueing Systems”

10



M/G/1 (Cont’d)

* {N(?), t 20} representing the number
of customers in the system at time #
1s NOT a Markov process

Service time is not exponential! Future value of N(t)
depends not only on the current value of N(t), but also
on the remaining service time for the current customer!

* However, by explaining N(?) only at
instants of departure, we can define
an embedded Markov chain

— Let 0<t,<t,<...<t,<... denote the

successive times at which a customer
completes service

— X, =N(t,): number of customers the n’
departing customer leaves behind

— { X, } is a Markov chain

21

M/G/1 (Cont’d)

 Explain that { X } is a Markov chain

— Let 4 denote the number of customers
who arrive for service during “service
time of (n+1)st customer” (denoted by s)

(X, -1+4 if X, 21
A X, =0

— s is independent of service times of other
customers and of the number of
customers in the system

— The arrival process is Poisson, which has
stationary increments = 4 depends only
on s and not on when the service began

— X, depends only on the value of X and

independentr.v. 4, noton X |, X, ...

Therefore, { X } is a Markov chain

22

ECE560

11



One-step transition matrix P
of the embedded Markov
chain {X_}?

23

Find Transition Matrix P of {X}

* Since arrivals are Poisson
P[A=n|s=t] = e*(A)" /n!l, n=0, 1, 2, ...
* Therefore
Py=PX,, =j|X, =i
=P[d=j—i+1]
=[ P[A=j—i+1]|s=1]dW(1)
by "Total Probability Law"
W(.):c.d.f. of the service time s

J—i+l
goe—ﬂtLdWs(z), j-it120,i>1

= (j—i+1D)!
0, Joi+l<0(i<i-1),i>1

/

Why? departing customers can't leave
behind fewer than “one less than that
are found in the present state: i-1”

24
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Find P of {X_}(Cont’d)

Let k, = Pr[n customers arrive during one
service interval

k, =PlA=n]= j0°?>[A =n|s=tdW.(1)

=[ e W aw (), n=0]12,.

n!

Then:
o 0 (A e
.[o e it%dWs(t) =k J2i-1i21
P = (j—i+1)!
0, j<i-li>1
We have:
(2 2 92 2 92 9 T
ky k, k, ky k, kg
0 k, k, ky ki k,
P-(P,]- 0 0 ky, k k, k,
0 0 0 Kk, k Kk,
0 0 0 0 k, Gk

25

Find P of {X_}(Cont’d)

nJ

» How do we find the first row of P?
— If a departing customer leaves NO customers
behind (X,=i=0), then no departure can occur
until a new customer Z arrives.

— The number left behind by that customer Z is
simply the number that arrive during his service

interval.
nth customer | New Arrivals during | (n+1)st
left behind: i | arrival service of (n+1)st | customer left
customer behind: j
0 1 k k
1 k k
i>1 k i-1+k

— Therefore, the state transition probabilities are the
same for i=0 as for i=1, i.e., the first row of P =
the second row of P: P =P, =Pr(A=k)

s o

e = o

2
2
1
0

o T = 3 =
I

3 4
3 4
2 3
1 2
0 1
0

TR

5
5
4
3
2
1

!
. oo oo T
.o c o™X
B R

0

26
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Stability of {X,}

» Stability e== p < 1; intuitively,
+ Stability =) average number of

customers who arrive during one service
time, E[A], is less than 1

E[A]= nP[A=n]= inkn

n=0

&l

M

o (A1)
nf e %dWs(t)

©

J‘w ey MdWs(t)
0 =2 n!

= j: e (A dW (t)

= [udw (1) = A[ 1w (1) = 2,
=Alu=p

+ Ifp <1, the embedded Markov chain {X,}
is ergodic (proof see P304) and thus has a
steady-state probability distribution 7 .

It’s shown that: p=1, {X} is recurrent null; p>1, {X,} is
transient. In either case, {X,} has no steady-state distribution!

27

Summary

{N(t), t >0} representing the number of
customers in the system at time ¢ is NOT a
Markov process

An embedded Markov chain can be
defined by explaining N(z) only at instants
of departure

— X, =N(t,): number of customers the n"
departing customer leaves behind

— { X, } is a Markov chain

ke Kk, k, ky k, ki
kO kl kZ k3 k4 kS
0 k, Kk, ky, k, k,
Potp,1-|0 0 R ko kK
0 0 0 k, Kk, Kk,
0 0 0 0 k, Kk

— {X,} is ergodic and thus has a steady-state
probability distribution T when p=E[A] < 1

28

ECE560

14



How to find z ;?

. = steady state probability that a
departing customer leaves i
customers behind.

29

Find ©t

We will be interested in two discrete
distributions and their z-transforms

— m, = steady state probability that a departing
customer leaves i customers behind = Pr{X=i}

— k, = probability that i customers arrive during a

service time interval = Pr{A=i}
z-transforms (review):

Defi: g,(2)=E['1=Y v

J

gx()=n()=Y e

gD =k(2)=Y k7'

30
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1 b
. b
Find = (Cont’d) Find  (Cont’d)
* Examine the component by component
statement of matrix equation n=nP:
s n=(m, T, T,, . . .) 18 the solution to i o
; =) mP,i=012,.
the equations =L
) i+l
7 =7k ﬂiZZﬂjPﬁZﬂ'OPOi+Z7Z'jPﬁ+O
0 Jj=0 Jj=1
Z T i = 1 i+1
i=0 = ok, + Z 7k,
/ \ j=1 v\ \
Mk k k k k k 7 Previous 1 customers Previous i-j+1 arrived
k ' kl k : i ' k ) k T customer left  arrived during customer left;  during service
0 1 2 3 4 5 . ) .y .
0 ko k, k, ki Kk, 0 behind service behind
0 0 k, k, Kk, k S :
P = P — 0 1 2 3 le
[P,] A S S Multiplying by z’:
o 0 0 0 k, &k _ o _
0 1 w2z =rm.kz' + Z 7k 7
j=1
) i . i+1 "
P ki1 jzi=-liz1 = mok,z' +;Z:l 7k, .z
7o, j<i-li>1 {,l .
) i+ " k. i
=r,kz' + —z w2 = ToltinZ
z 5 z
31 7

16



Find  (Cont’d)

Summing over i:
00

Y mizi=7n(2)
i=0

© i+1 1

i=0 Jj=0 “
1 o i+l

Z =0 j=0 Z =

= item #1 + item #2 + item #3

Where,

item #1 = 7, k;z' = 7.k (z)

i=0

co1 : ok, 2"
i i+1 0™vi+l
M E RS W SNEL L S

0 7z_ 0
i i+1 0 i+1
”0§,kiz +_§,§,ﬂjki—j+lz __E,kmz
i=0 i=0

. T) < ; Ty |~ ;
item #3 = ——Oz k,z" = —70[2 kiz' - kozo}
i=0 i=0

z “
= - 2k (2) - &, ]
z
o i+l
item #2 = LZ Z 7k 2
Z =0 j=0 Proof

= Ll (2) - ko]

33

Find © (Cont’d)

* Summing all terms
n(z) = term #1 + term #2 + term #3

=7 ,k(z) + 1/zn(z) k(z) -

lzm k,-1/zm k(z) + l/zw )k,
By rearranging:
w(z)[1-1/zk(z)]==n,[ 1- 1/z] k(z)
Multiplying both sides by (-z)
©(z) [k(z) -z] =n ,[1- z] k(z)

_ m,(1-2)k(2)

e (Eq#1)

7(z)

34
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Find 7 (Cont’d)

I=7(1) = lim 7(2) = hﬂ”ﬁ%

Applying L'Hopital' s rule :
[z (1= 2)k ()]

im ;

1 [k(z)-z]

mol(1 - 2)k'(z) — k(2)]

- lim E'(z)-1
_—rgk(l)  —my 7w,

kD=1 p-1 1-p

The steady-state probability
distribution is given by:

Ty =1=p
i+1
7zi=7r0ki+27zjk

j=1

i—j+1

35

Interpretation of Results

m; : steady state probability that a departing
customer leaves i customers behind — 7, =
Pr[X=i]

p, : probability that there are i customers in
the system at arbitrary times — p, = Pr/N=i]
r, : probability that an arriving customer
finds i customers already in the system

It can be shown (by Klienrock) that for
M/G/1 systems:

ﬂ} ::}71:: ri

36
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Interpretation of Results (Cont’d)

» Using m,= 1- p, Eq#l becomes:

(I-p)(1—2)k(z)
k(z)-z (Eq#2)

=p(z)=r(z)

m(z)=

which is the z-transform of the steady-state
probability distribution!

37

Agenda (M/G/1)

* Embedded Markov-chain {X,} solution

to analyzing M/G/1 systems
v’ Transition probability matrix P
v/ System stability: E[A]=p<1
v’ Steady-state probability distribution:

mw,=1—p  (same as for M/M/1)
i+1
7w, =mok; + Zﬂjk

j=1

L

i-j+1

— Find performance measures

 L: average number of customers in the
system

+ W: average response time

¢ L, average number of customers in the
queue (= average queue length)

¢ W, average waiting time

38

ECE560

19



Find L

* According to the “moment
generating property” of the z-
transform:

— Average number of customers in the
system: L =E[N|=p (1) =n"(1)

(- p)d - 2)k(z)
k(z)—z

=p(z)=r(z)

7(z)=

39

Find L (Cont’d)
» Differentiating Eq #2

(1_,))(1_2);((2)]
k(z)-z u
/

p(2)=7'(z) {

_1-p @ -2k (@)+ 2K (2)+ k()]

(k(2)—zf — v

» Evaluating for z = 1 using L’Hopital’s
rule:
L=7(0=1im7'@=lim’ =lim"; =
K" (1)

L = Eq #3
p+2(1_p) (Eq #3)

Need to find k™ *(1)!
Using LST it can be shown (extra notes):

k(z)=W[A - Az], W [.]is LST of s
k'(z) = =AW O[1 - Az),
k'"'(z) = AW P[A - Az] (Eq #4)

40
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Find L (cont’d)

Hence based on (Eq #4):

k'(1) = —Aw7[0]
k''(1) = 2w 0]

" ,d"X'[0
By MGP of LST > £Lx 1= -1y 2
_ _aw 18l _ .
W, = Els]= - —w0]
6=0
: AW (6] @)
= —1 St =
BLl= P w0

We have:

k'(1) = =AW V[0]= -A(-W )= p
k''(1) = W P[0]1= FE[s”]
Substituting into (Eq #3)

K'(1) PE[s*]
L = -
P 0-m P 20p)

41

Find L (cont’d)

+ jz()lg[i)] , using E[s']=Var[s}+E’[s]:
A(Var[skE*[s]) _

2 2
. A Var[sl+ p

L=
P 1 p) 2(1-p)

2 2 [
—p+2 (1+CS), where C, = Varfs] is C.O.V.
2(1-p) E[s]

C.0.V: Coefficient of Variation

-- the Pollaczek-Khintchine formula
The P-K formula shows how the expected
number of customers in the M/G/1 system

depends on C,

Note: for the exponential service time
distribution: C;=1, then
2 2
Pt P

pH—02=
2(1-p) l-p 1-p

which is the same as in M/M/1!




Agenda (M/G/1)

* Embedded Markov-chain {X_} solution
to analyzing M/G/1 systems
v Transition probability matrix P
v/ System stability: E[A]=p<l
v Steady-state probability distribution:

m,=1-p  (same as for M/M/1)
i+1
=Tk, + Zﬂjk

J=1

i—j+1

TL=pTn

— Find performance measures

v'L: average number of customers in the
system

» W: average response time

* L, average number of customers in the
queue (= average queue length)

« W, average waiting time

43

Find W, Ly, W,

* W (average response time):
By Little’s Law:

2 2
L +C)

W=L/A =#

* L, (average queue length):

L, = L—(1*P[Server is not empty]
=L —(1- P[0 customer in the system])
=L-(l-7)=L-(1-(1-p))
_p+C)
~2(1-p)

* W, (average waiting time):

W oL /g P0G p(1+C)

T T 2pa T 21-p)

44
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Another Way to Find L, W,

Notations:
— s: r.v. describing the service time

— g: r.v. describing the time a customer spends in
the queue before service begins

— w: r.v. describing the total time a customer
spends in the system: w = g+s

Takacs Recurrence Theorem

— To calculate moment of queueing time E[q'], in
terms of moment of service time E[s']

— Given an M/G/1 system in which E[s/*] exists,

then E[q], E[¢?], ...... , E[¢] also exist and
k1 _ % L (kK E[SM] ki
E[q]__l—pg‘l(ij S Eg" ]
k=1,2,., j

where E[q°]=1

— Corollary: then the moments E[w], E[w?], ...... ,

E[wi] also exist and

k

k ;
Elw']1=) (i]E[s']E[qk"], k=12, J

i=0

45

Another Way to Find L, W (Cont’d)
By “Takacs Recurrence Theorem™:

= Blg]= 2 31| Bl
Wq—E[q]—l_p;[i] Sl

_ A E[s’]
1-p 2

LVar[s]+E2[s]

1-p 2

_ A E[5IC+E’[s]
1-p 2

_AE’[s)(1+CY)

C o 21-p)

_AWW(+CY) _ pW (1+C7)

o 21-p)  2(-p)

Elq"]

which agrees with the previous result

By Little's Law :

2 2 2
Lq:W;t:pWs(HCS)l:p a+C)
2(1=p) 2(1-p)

46
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Another Way to Find L, W (Cont’d)

By the Corollary:

11 . .
W = E[w]= §(iJE[s']E[ql ]
= E[s"1E[q']+ E[s'1E[q"]
= E[q]+ E[s]
2
_AUC)) Ly
2(1- p)
_2p(1-p)+p*(1+C))
2(1- p)
which agrees with the previous result

By Little's Law:
L=WA

47

M/D/1 Queueing Systems

* Assume
— Poisson arrival process with rate A

— Deterministic service rate p
¢ Constant service times=W_ =1/ u

* A special case of M/G/1 with Var[s]
=0, E[s] =W, > C.O.V.

C Vars] 0

© o E[s]

48
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M/D/1 Queueing Systems
(cont’d)

* Performance measures

Lo P4+C) _ p _p=p)
2(1-p) 2(1-p)  2(1-p)
wep=L2=p) _W(2=p)
2(1-p)4  2(1-p)
;P p

T 2(1-p)  2(1-p)

2
(A R N
0 2(1-pA 2(1-p)

49

Topics

e Transform Methods
e M/G/1, M/D/1
- GI/M/1

Solution:

— Constructing an embedded Markov
chain

— And applying z-transform and Laplace-
Stieltjes transform methods

“Embedded Markov Chain
Queueing Systems”

50
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Renewal Processes
(Chapter 4.5)

* A Poisson process can be

characterized as a counting process
for which the inter-arrival times
(times between successive events) are
i.i.d, exponential r.v.s

* A renewal process is a generalization

of the Poisson process

Dr. Xing © GI/M/1 51

Renewal Processes

Let {N(t), t >= 0} be a counting process

X,: the time of occurrence of the first event
X,: the time between the (n-1)¢h and the nth
event of the process for n >=2

If the sequence of nonnegative r.v.s {X,, n
>=1} isi.i.d., then {N(t),t>=0} isa
renewal (counting) process

— Common c.d.f.

F(x)=P[X, <x],n=123,....
« F(0)=0

— Common mean: L
— Common variance: 62

Dr. Xing © GI/M/1 52
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Renewal Processes (Cont’d)

* A renewal has taken place when an
event counted by N(t) occurs
— N(t): number of renewals in the interval
(0,t]
— M()=E[N(D)]
* mean number of renewals in (0,t]

e Called “renewal function”

* The waiting time until the nth renewal
(7,):

Wy=0, W =X+ X,+..+X, ,n=1

— {W,,n =0} is also called the renewal
process.

Dr. Xing © GI/M/1 53

Renewal Processes (Cont’d)

* Elementary Renewal Theorem:

— Let {N(t), t >= 0} be a renewal process
with E[X, ]= p for all n. Then:

e G
11— t ﬂ
— Proposition:
a2 L
>0 t lu
Dr. Xing © GI/M/1

54
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Renewal Processes (Cont’d)

* Example 1: A light bulb is installed at time
W,=0. When it burns out at time W,=X, it
is replaced by a new bulb, which burns out
at time W,=X,+ X,

» This process continues indefinitely: as each
bulb burns out, it is replaced with a brand
new one.

» Assume the successive bulb lifetimes
{X,,n=1}

are i.i.d.; N(t) is the number of bulb
replacements that occur by time t. Then

(N(f),t> 0}

is a renewal process.

Dr. Xing © GI/M/1 55

Renewal Processes (Cont’d)

« Example 2: Suppose the renewal process
{N(».t20} is Poisson with parameter A. Then,

(A
K

PIN(t)=k]=e k=0,12...

M(t) = E[N(¢)] = At

Poisson process is the only renewal process
with a linear renewal function!

* Suppose {N(),:>0} is a renewal process with
renewal function M(?)=>5¢. What is the
probability distribution of the number of
renewals by time t=/5? What is the
probability that there are 100 renewals by
time 157
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GI/M/1 Queueing Systems

* Assume
— Renewal arrival process
* The inter-arrival times are i.i.d. r.v.s
— Exponential service time with a mean
of 1/n

* pis the average service rate
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GI/M/1 Queueing Systems

{N(t), t > 0} representing the number of
customers in the system at time t is NOT a

Markov process

However, by explaining N(t) only at
instants of arrival, we can define an
embedded Markov chain
— Let 0<t,<t,<...<t,<... denote the
successive times at which a customer

arrives
— X, =N(t,): number of customers the n
arriving customer finds in the system

— { X, } is a Markov chain
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GI/M/1 (Cont’d)

* Ifp <1, the embedded Markov chain
{X,} is ergodic and thus has a steady-
state probability distribution & = {m_}.

» 7, the steady-state probability that an
arriving customer finds z customers in
the system, forn=0, 1, 2, ...

* X:r.v. describing the number of
customers that an arriving customer
finds in the system, thus, n, = P[X=n]
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GI/M/1 (Cont’d)

*  Wolff showed that

— m, is the unique solution of equation

1-7,= A [un,)

such that 0<m, <l, where A*[0] is the

LST of the inter-arrival time z

— General expression of ©, in terms of 7,

7, =m,(1-7,) ,n=0,.2,..

A geometric distribution (L#6) with q=1- &y, p=m,,

thus,
Fx)=L -5 -4 o
p Ty p 7Ty
Dr. Xing © GI/M/1
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Applications (1)

Consider the M/M/1 queueing system
» First, find A*[0]:
— the inter-arrival time 7t is exponentially
distributed with rate A, that is,

Prir<t]=1-¢"

x>0

otherwise

pdf - f(x)= {ﬁe

* Second, find 7,

1-7, = A [un,]

* Third, find 7,

Ty :72-0(1_7[0)”

Dr. Xing © GI/M/1 61

Applications (2)

Consider the D/M/1 queueing system
» First, find A*[0]:

— the inter-arrival time t is a constant 1/A

» Second, find 7z,

-7, = A'[um,]

* Third, find 7,

Ty :72-0(1_7[0)”
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GI/M/1 (Cont’d)

¢ Distinction between

— m,: the steady-state probability that an
arriving customer finds » customers in
the system

* From “an arriving customer” point of
view

— p,: the steady-state probability that there
are n customers in the system

* From “a random observer” point of
view
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An Illustrating Example (n,vs P,)
- A D/D/1 with E[t]=10 min, W=5
min =2 p=1/2

— E[t] > W, = an arriving customer never
sees another customer, hence

‘ﬂozl,ﬁnzo for n>1

— p=1/2 -> the server is busy half of the
time, i.e., the system contains one
customer half the time and is empty half
the time as observed by an outside
observer, hence

‘p0=0.5,p1=0.5,pn=0 for n22‘

n, = p, iff the arrival process is
Poisson (shown by Wolff)
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GI/M/1 (Cont’d)

* P.?

» Kleinrock showed that for GI/M/1:

py=1-p
p,=pr (-7, n=

Dr. Xing © GI/M/1
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GI/M/1 (Cont’d)

* Find L, W, L, W,?

L= Z np, = plzoz n(l-rzy)""
n=0 n=0

00 " ' 1
= pﬂo[z (1—7[0) J =pry—5= ﬂ
n=0

Ty T

L, =L~ (1*P[Server is not empty]
= L —(1- P[Ocustomer in the system])
=L-(1-py)=L-(1-(1-p))
1-7
B_ e p-m,)

:L—p:i
7 Ty
w=r/a=Ls1=-"
7y 7Ty
7y
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