ECE560: Computer Systems Performance Evaluation

Lecture #3 – Experimental Design and Analysis

Instructor: Dr. Liudong Xing

Administration Issues (1/29)

- Last day to add/drop: <u>Today</u>
- Project team setup due <u>Today</u>
 - Two students per team
- Homework #1 assigned
 - Please download problems from course website
 - Due: February 5, Monday

Review of Lecture #2

- 3 key issues related to performance measurements are presented
 - 5 types of workloads that have been commonly used to compare CS
 - Addition instruction, Instruction mixes, Kernels, Synthetic programs, Application benchmarks
 - Performance monitoring techniques
 - Summarizing measured data
 - By a single number: sample mean, sample median, sample mode, geometric mean
 - Variability: sample range, sample variance, sample standard deviation, sample COV, percentiles, SIQR

3

Topics

- Terminology in experimental design and analysis
- Types of experimental designs
- 2^k factorial design and analysis

Reference:

R. Jain, "The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling", Wiley, John & Sons, 1990 (Part IV)

Introduction

- Involved in both Measurement and Simulation
- The goal of a proper experimental design is to obtain the maximum information with the minimum number of experiments
- A careful experiment design and analysis are essential for reducing cost and drawing meaningful conclusion

5

Terminology

- An *obsolete* example: choices to make for designing a personal workstation
 - Microprocessor: 68000, Z80, 8086
 - Memory size: 512KB, 2MB, 8MB
 - Disk drives: 1, 2, 3, 4
 - Workload types: secretarial, managerial, scientific
 - User education level: high school, college, postgraduate

Terminology (I)

Response variable

- The outcome of an experiment
- The measured performance of the system
- Example
 - Throughput in tasks completed per unit time
 - Response time of tasks

,

Terminology (II)

Factors

- Each variable that affects the response variable and has several alternatives is a factor
- Also called *predictor variables* or *predictors*
- Example: five factors in workstation design study
 - CPU types, memory size, number of disk drives, workload types, user's education levels

Q

Terminology (III)

Primary factors

- The factors whose effects need to be quantified
- Example: one may be primarily interested in quantifying the effects of *CPU type*, *memory size*, and number of *disk drives*

Secondary factors

- Factors that impact the performance but whose impact we are not interested in quantifying
- Example: one may not be interested in determining whether performance with postgraduate is better than that with college students; quantifying the difference between the three *workloads*

9

Terminology (IV)

Levels

- The values that a factor can assume are called its levels
- **Each** factor level constitutes one alternative for that factor
- Also referred to as treatments
- Example: CPU type has three levels: Z80, 68000, 8086 etc.

Replication

- Repetition of all or some experiments is called replication
- Example: the study has three replications if all experiments in the study are repeated 3 times

Terminology (V)

- **Design**: consisting of specifying
 - The number of experiments
 - The factor level combinations for each experiment
 - The number of replications of each experiment
 - **Example:**

perform 3*3*4*3*3=324 experiments and 5 replications \rightarrow 1620 observations

11

Terminology (VI)

- Experimental unit
 - Any entity used for the experiment
 - Generally, only those units considered as one of the factors in the study are of interest
 - **Example:**
 - Users hired to use the workstation while measurements are being performed
 - Patients in medical experiments
 - Land used in agricultural experiments

■ Interaction

- Two factors A and B are said to interact if the effect of one depends on the level of the other
- Example: the performance of a system with two factors A, B, each with two levels

Non-Interacting Factors			
	A1	A2	
B1	3	5	
B2	6	8	

Interacting Factors			
	A1	A2	
B1	3	5	
B2	6	9	

13

Agenda

- Terminology in experimental design and analysis
- **■** Types of experimental designs
 - Simple designs,
 - Full factorial designs,
 - Fractional factorial designs
- 2^k factorial design and analysis

Simple Designs (I)

- Start with a typical configuration and vary *one* factor at a time to see how that factor affects the performance
- Example: revisit the workstation design
 - Initial configuration: Z80 CPU + 2 disk drives + 2MB memory running a managerial task by a college student
 - Measure the performance of the initial configuration
 - Vary the first factor of CPU type, compare performance to decide which CPU is the best
 - Then change the number of drives to 1, 3, 4, compare performance to find the optimal number.

15

Simple Designs (II)

Given k factors (the ith factor having n_i levels), a simple design requires only n experiments

$$n = 1 + \sum_{i=1}^{k} (n_i - 1)$$

- Disadvantages
 - Simple design may lead to wrong conclusions if the factors have interaction
 - Example: effects of the CPU depends on the size of the memory, need to try all possibilities to decide the optimal combination
 - Simple designs are not recommended

Full Factorial Designs (I)

- Utilizes every possible combination at all levels of all factors
- **Example:**

 $n = (3 \text{ CPUs})(3 \text{ memory sizes})(4 \text{ disk drives})(3 \text{ workloads})(3 \text{ educational levels}) = <math>\underline{324}$ experiments

Given k factors (the ith factor having n_i levels), a performance study using a full factorial design requires n experiments

 $n = \prod_{i=1}^{k} n_i$

17

Full Factorial Designs (II)

- Advantages
 - Every possible combination is examined
 - The effects of every factor including the secondary factors and their interactions are examined
- Disadvantages
 - Cost of the study is high, especially when each experiment has to be repeated several times

Full Factorial Designs (III)

- Three ways to reduce the number of experiments
 - Reduce the number of levels for each factor
 - Example: 2^k factorial design
 - Reduce the number of factors: by choosing the factors that have significant impact on performance
 - Use fractional factorial designs →

10

Fractional Factorial Designs (I)

- Use a fraction of the full factorial design
- Pros and cons
 - Save time and expense as compared to full factorial designs
 - Information obtained is less: may not be possible to incorporate interactions among all factors

Fractional Factorial Designs (II)

- Example: revisit the workstation design ignoring the number of disk drives for this example
 - A full factorial design: $n = (3 \text{ CPUs})(3 \text{ memory sizes})(3 \text{ workloads})(3 \text{ educational levels}) = 81 \text{ experiments} \rightarrow 3^4 \text{ design}$
 - A 3^{4-2} fractional factorial design: 9 experiments, each of the four factors is used three times at each of its three levels \rightarrow

21

Fractional Factorial Designs (III)

■ An example fractional factorial design (Table 1)

Experiment #	CPU	Memory Size	Workload Type	Educational Level
1	68000	512K	Managerial	High School
2	68000	2M	Scientific	Postgraduate
3	68000	8M	Secretarial	College
4	Z80	512K	Scientific	College
5	Z80	2M	Secretarial	High School
6	Z80	8M	Managerial	Postgraduate
7	8086	512K	Secretarial	Postgraduate
8	8086	2M	Managerial	College
9	8086	8M	Scientific	High School

Hands-on Exercise

- The performance of a system being designed depends on 3 factors
 - **CPU** type: 68000, 8086, Z80
 - Operating system type: CP/M, MS-DOS, UNIX
 - Disk drive type: A, B, C
- Q: How many experiments are required to analyze the performance if
 - There is significant interaction among factors
 - There is no interaction among factors
 - The interactions are small compared to main effects

23

Agenda

- Terminology in experimental design and analysis
- Types of experimental designs
- 2^k factorial design and analysis

- A 2^k factorial design is used to determine the effect of k factors, each with two alternatives or levels
 - The effect of a factor is unidirectional (very often)
 - Performance either continuously decreases or increases as the factor is increased from min to max
 - Can begin by experimenting at the *min* and *max* level of the factor
 - Decide if the difference in performance is significant enough to justify detailed examination
 - Can help in sorting out factors in the order of impact on performance
 - Try more levels for factors that have significant impact

25

An Example: 2² Factorial Designs

 Study/quantify the impact of memory size and cache size on the performance of a workstation being designed. 2 levels of each factor are chosen for the initial simulation.

Performance in MIPS			
	A: Memory Size		
B: Cache Size	4MB	16MB	
1KB	15	45	
2KB	25	75	

Define two variables

$$x_A = \begin{cases} -1 & \text{if } 4\text{MB memory} \\ 1 & \text{if } 16\text{MB memory} \end{cases}$$

$$x_B = \begin{cases} -1 & \text{if } 1\text{KB cache} \\ 1 & \text{if } 2\text{KB cache} \end{cases}$$

- Regression analysis allows one to estimate or predict a *r.v.* as a function of several other variables
 - Response variable estimated variable
 - Factors/predictors/predictor variables variables used to predict the response
 - Assume all predictor variables are quantitative so that arithmetic operations (+,*) are meaningful

$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$$

- y: response variable, the system performance in MIPS
- \blacksquare q_0 : the mean performance
- lacksquare q_A: the effect of memory on the performance
- $q_{\rm B}$: the effect of cache on the performance
- lacksquare q_{AB} : the effect of the interaction between memory and cache

27

2² Factorial Designs (Example Cont'd)

Substituting the four observations

$$15 = q_0 - q_A - q_B + q_{AB}$$

$$45 = q_0 + q_A - q_B - q_{AB}$$

$$25 = q_0 - q_A + q_B - q_{AB}$$

$$75 = q_0 + q_A + q_B + q_{AB}$$

Solving the equations

$$y = 40 + 20x_A + 10x_B + 5x_A x_B$$

Quantify Effects for General 2² Design

- Suppose y₁ (-1,-1), y₂ (1, -1), y₃ (-1,1), y₄ (1,1) represent the four observed response of a system with two factors A (-1,1) and B (-1,1).
- Exp.
 A
 B
 y

 1
 -1
 | -1
 | y1

 2
 1
 | -1
 | y2

 3
 | -1
 | 1
 | y3

 4
 | 1
 | 1
 | y4
- Use regression model for 2² design

$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$$

■ We have

$$y_{1} = q_{0} - q_{A} - q_{B} + q_{AB}$$

$$y_{2} = q_{0} + q_{A} - q_{B} - q_{AB}$$

$$y_{3} = q_{0} - q_{A} + q_{B} - q_{AB}$$

$$y_{4} = q_{0} + q_{A} + q_{B} + q_{AB}$$

$$q_0 = \frac{1}{4}(y_1 + y_2 + y_3 + y_4)$$

$$q_A = \frac{1}{4}(-y_1 + y_2 - y_3 + y_4)$$

$$q_B = \frac{1}{4}(-y_1 - y_2 + y_3 + y_4)$$

$$q_{AB} = \frac{1}{4}(y_1 - y_2 - y_3 + y_4)$$

Sign Table Method for Calculating Effects

■ A 4 X 4 sign matrix for the example:

I	A	В	AB	у
1	-1	-1	1	15
1	1	-1	-1	45
1	-1	1	-1	25
1	1	1	1	75
160	80	40	20	Total
40	20	10	5	Total/4

1: not explicitly written out

+: 1

- -: -1
- Apply column multiplication operation
 - E.g.: Multiply entries in column I by those in column y, put the sum under column I
- Each sum is divided by 4 to obtain the coefficients of the regression

31

Agenda

- Terminology in experimental design and analysis
- Types of experimental designs
- 2k factorial designs
 - 2² factorial designs

Regression equations
$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$$

- Sign table
- General 2^k factorial designs

General 2^k Factorial Designs

- 2^k factorial design
 - Require 2^k experiments for k factors, each having 2 levels
 - The analysis produces 2^k effects: C_k^1 main effects; C_k^2 two-factor interactions; C_k^3 3-factor-interactions.....
- The techniques of quantifying effects can be easily extended from 2² to 2k design

33

General 2^k Factorial Designs -- Example

3 factors need to study for designing a machine

Factor	Level -1	Level 1
Memory size, A	4MB	16MB
Cache size, B	1KB	2KB
# of processors, C	1	2

■ The measured performance in MIPS

Cache size	Memory size 4MB		Memory size 16MB	
(KB)	1 processor	2 processor	1 processor	2 processor
1	14	46	22	58
2	10	50	34	86

Example (Cont'd)

- <u>Hands-on problem</u>: quantify the main effects and all interactions using
 - Regression equations
 - Sign table

35

Summary

- Frequently-used terms in experimental designs
 - Response variables, factors (predictors, predictor variables), levels (treatments), primary factors, secondary factors, replication, designs, experimental units, interactions
- Types of experimental designs
 - Simple designs, full factorial designs, fractional factorial designs
- A closer look at 2^k factorial designs
 - Regression equations and sign table methods to quantify the effects of the factors on the system performance

Next Topic: Simulations Overview