ECE560: Computer Systems Performance Evaluation

Lecture #4 – Simulation Techniques

Instructor: Dr. Liudong Xing

Administration Issues (1/31)

- Homework #1
 - Please download problems from course website
 - Due: February 5, Monday
- Project proposal due <u>February 23, Friday</u>
 - Refer to the Proposal Guidelines

Review of Lecture #3

- Frequently-used terms in experimental designs
 - Response variables, factors (predictors, predictor variables), levels (treatments), primary factors, secondary factors, replication, designs, experimental units, interactions
- Types of experimental designs
 - Simple designs, full factorial designs, fractional factorial designs
- A closer look at 2^k factorial designs
 - Regression equations and sign table methods to quantify the effects of the factors on the system performance

L#3 Example (revisit)

 Study/quantify the impact of memory size and cache size on the performance of a workstation being designed.

11/0	Performance in MIPS			
No.		A: Memory Size		
The state of the s	B: Cache Size	4MB	16MB	
	1KB	15	45	
10/4	2KB	25	75	

Method 1: Regression equation

$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$$

$$15 = q_0 - q_A - q_B + q_{AB}$$
$$45 = q_0 + q_A - q_B - q_{AB}$$

$$q_0 = 40$$

$$25 = q_0 - q_A + q_B - q_{AB}$$

$$75 = q_0 + q_A + q_B + q_{AB}$$

$$q_B=10$$

I	A	В	AB	у
1	-1	-1	1	15
1	1	-1	-1	45
1	-1	1	-1	25
1	1	1	1	75
160	80	40	20	Total
40	20	10	5	Total/4

4

L#3 Review Question

Please determine the value of u, v, and w in the table.

I	A	В	AB	У
1	-1	-1	1	15
1	1	-1	-1	45
1	-1	1	-1	и
1	1	1	1	75
160	80	40	v	Total
40	20	10	w	Total/4

I	A	В	AB	У
1	-1	-1	1	u
1	1	-1	-1	50
1	-1	1	-1	40
1	1	1	1	90
200	80	v	20	Total
50	20	w	5	Total/4

5

Simulation

- Basic concepts
- Classifying simulations
- Discrete simulations
- Simulation tools

Definition of Simulation

- Computer simulation modeling is a process of designing a mathematical-logical model of a real system and experimenting with the model on a computer
- Allow inferences to be drawn about the system
 - Without building them if they are only proposed systems
 - Without disturbing them if they are operation systems that are costly or unsafe to experiment with
 - Without destroying them if the object of an experiment is to determine their limits of stress

Systems and Models

- A system
 - A set of interdependent components united to perform a specific function
 - A collection of mutually interacting objects that are affected by outside forces (environment)
- A model
 - An abstraction of a system
 - A description of a system through, for example, computer programs, or some mathematical equations and relations or graphical representations

Model Verification & Validation

- Verify the model
 - The process of determining that the simulation model behaves as intended
- Validate the model
 - The process of determining that the simulation model is a useful or reasonable representation of the system
 - Validation checks the accuracy of the model's representation of the real system

System State Description

- A system is characterized by a set of variables
 - Time is the major independent variable
 - Other variables are function of time and are the dependent variables
- Each combination of variable values represents a unique state/condition of the system
- The manipulation of the variable values simulates movement of the system from state to state
- A simulation experiment involves observing dynamic behavior of a model in accordance with well-defined operating rules designed into the model

Other Definitions

- Events
 - The cause of a state variable change
 - The state changes themselves
- Simulation/simulated time
 - The value of the parameter time used in the simulation program
 - Corresponds to the value of the time valid in the real system
- Run time
 - The time it takes to execute a simulation program

Classifying Simulations (Cont'd)

- Discrete-event (discrete) simulations
 - The state changes discretely with the time
 - The dependent variables of the model change discretely at specified points in simulated time (event times)
 - **Example:** a manufacturing system with parts arriving and leaving at specific times; machine going down and coming back up at specific times
 - Time variable may be either *continuous* or *discrete*, depending on whether the discrete changes in the dependent variables can occur at any point or only at specified points in simulated time

Classifying Simulations (Cont'd)

- Mixed continuous-discrete models
 - May have elements of both continuous and discrete changes in the same model
 - **Example:** a refinery with continuously changing pressure inside vessels and discretely occurring shutdowns

Agenda √ Basic concepts /definition √ Classifying simulations ■ Discrete simulations ■ Simulation tools

Discrete Simulations Based on the timing mechanism (how to advance the simulated time) Time-based: time advanced by a constant step Event-based: time controlled by the occurrence of next events

An Illustrating Example: Queueing Systems

- Arrivals to an empty queue get immediate service
- Arrivals to a busy system are held in the queue until server is free
- Arrival rate is typically drawn from a r.v. distribution, e.g. Poisson with a rate λ
- Service rate is computed using the rate of processing for the device and is in units per time and is often denoted by μ

Applications of Queueing Systems

- Supermarket checkout line
- Bank teller line
- Batch jobs waiting on a CPU
- Traffic lights
- Planes to take off or land
- Airline reservation system
- Read/write requests to a disk controller

- First M: Poisson arrivals with a rate λ
- Second M: Exponential service times with a mean of $1/\mu$, so μ is the average service rate
- 1 server
- An infinite length buffer/queue
- Problem:
 - Determine the average number of jobs in service
 - Determine the average number of jobs in the queue

A Specific Example of M/M/1

- Consider a storage system with one disk drive and a queue. The I/O requests arrive to the storage system at the rate of 10 requests per second with Poisson pattern. The time to service an I/O request at the disk drive is exponentially distributed with a mean of 90 milliseconds.
- Problem:
 - Determine the average number of I/O requests in service
 - Determine the average number of I/O requests waiting in the queue

Time-based (synchronous) simulation

- Time advances in constant steps Δt
- The number of events that happened in the interval [t, $t+\Delta t$] may change from time to time
- Δt is assumed to be sufficiently small
- After each time advance, check if any events have happened in $[t, t+\Delta t]$
 - If so, the events will be executed: the state will be changed according to these events
- When *t* rises above some maximum, simulation stops

Time-Based Discrete Simulation (Cont'd)

- A time-based simulation program for M/M/1
 - Arrival rate λ
 - Service rate μ
 - Two state variables

 N_s : # of jobs in service (0/1) N_q : # of jobs queued (>=0) N_o >0 $\rightarrow N_s$ =1

- *Aim*: to generate a list of time-instances and state variables at these instances
- Program:
 - Pseudo-code (handout)
 - draw(p): evaluates to true with probability p and to false with probability l-p

```
1. input (\lambda, \mu, t_{\text{max}})
2. t := 0
3. N_s := 0; N_q := 0
4. while t < t_{\max}
5. do
6.
          t := t + \Delta t
        if \operatorname{draw}(\lambda \cdot \Delta t) then N_q := N_q
7.
          if N_s = 1
8.
          then if draw(\mu \cdot \Delta t)
               then if N_q>0 then N_q:=N_q-1
10.
11.
                        else N_s := 0
12.
       if N_s = 0 and N_q > 0
13.
          then N_s := 1; N_q := N_q - 1
14.
           writeln(t, N_q, N_s)
15.
16.
       od
```

Event-based (asynchronous) simulation

- Simulation is controlled by the occurrence of next events
- Time steps are of varying length such that there is always exactly one event in every time step
- Whenever an event occurs this causes new events to occur in the future
 - **Example:** event of the arrival of a job at a queue causes the system state to change, will also cause the event that the job is taken into service in the future

Event-Based Discrete Simulation (Cont'd)

- All future events are gathered in an ordered event list
 - Head contains the next event to occur and its occurrence time
 - Tail contains the future events in the occurrence order
 - Whenever the first event is simulated/processed, take it from the list and update simulation time accordingly
 - New events that may be created during the simulation of the head event are inserted in the event list
 - The new head event is processed......

Event-Based Discrete Simulation (Cont'd)

- An event-based simulation program for M/M/1
 - Arrival rate λ
 - Service rate μ
 - Two state variables

 N_s : # of jobs in service (0/1) N_q : # of jobs queued (>=0) N_q >0 $\rightarrow N_s$ =1

■ Two next event variables

narr: time of the next arrival ndep: time of the next departure

- *Aim*: to generate a list of events times, and the state variables at these instances
- Program:
 - Pseudo-code (handout)
 - $negexp(\lambda)$: generates a realization of a r.v. with negative exponential distribution with rate λ

```
1. input(\lambda, \mu, t_{\text{max}})
2. t := 0
3. N_s := 0; N_q := 0
4. while t < t_{\rm max}
5. do
        if N_s = 1
      then narr := negexp(\lambda)
              ndep := negexp(\mu)
           if ndep < narr
             then t := t + ndep
11.
                 if N_q > 0
12.
               then N_q := N_q - 1
13.
               else N_s := 0
13.
            else t := t + narr
           N_q := N_q + 1
14.
15.
        else narr := negexp(\lambda)
             t := t + narr
16.
17.
            N_s := 1
        writeln(t, N_q, N_s)
18.
19. od
```

Simulation Tools

- A collection of modeling and simulation resources on the Internet:
 - http://home.ubalt.edu/ntsbarsh/simulation/sim.htm
- AweSim: a general-purpose simulation system, supporting
 - Model building
 - Analysis of models using simulation
 - The presentation of simulation results using animations, reports, and graphs
 - References:
 - A. Pritsker & J. O'Reilly, "Simulation with Visual Slam and AweSim (2nd Edition)", Wiley, John & Sons, 1999
 - Introduction to AweSim by J. Jean O'Reilly and William R. Lilegdon
 - AweSim: The Integrated Simulation System by A. Alan B. Pritsker and J. Jean O'Reilly

Summary of Lecture #4

- Applications of simulation modeling
- Basic concepts /definition of simulations
 - System, model, simulation definition, system state description, event, simulation time, run time
- Classification
 - According to state space
 - Discrete vs. continuous event simulations
 - According to time evolution
 - Discrete vs. continuous time simulations
 - Discrete simulations in terms of time advancing mechanisms
 - Time-based, event-based
- Simulations tools

Things to do

- Homework #1 due Feb. 5, Monday.
- Project proposal due Feb. 23, Friday.

Next Topic

Probability Theory (review)