ECE560: Computer Systems Performance Evaluation

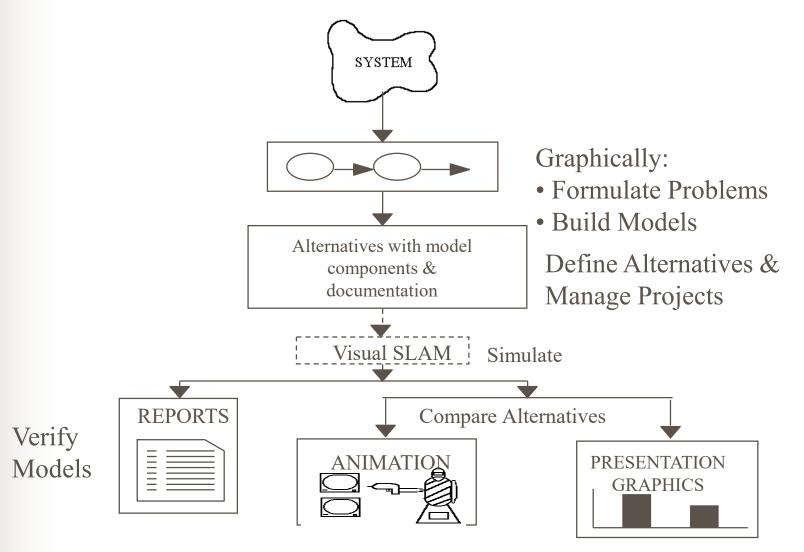
Lecture#4 Extra -- Simulation with AweSim

Instructor: Dr. Liudong Xing

References on AweSim

- A. Pritsker & J. O'Reilly, "Simulation with Visual Slam and AweSim (2nd Edition)", Wiley, John & Sons, 1999
- 2. Some papers on AweSim available from course website
 - Introduction to AweSim by J. Jean O'Reilly and William R. Lilegdon
 - AweSim: The Integrated Simulation System by A. Alan B. Pritsker and J. Jean O'Reilly
- *3. Website:*
 - A Collection of Modeling and Simulation Resources on the Internet: <u>http://www.idsia.ch/~andrea/simtools.html</u>

AweSim Overview (I)


- A general-purpose simulation system, supporting
 - Model building
 - Building models of various system alternatives
 - Discrete models: define changes in system status that occur at event times, using C or Visual Basic
 - Continuous models: write equations defining the value of continuous variables at any point in time and define how often to update them
 - Network models: Define process interaction using predefined "events"
 - Analysis of models using simulation
 - The presentation of simulation results
 - Animation to visualize the dynamics, structure, and control logic of the model
 - Reports and graphs (bar charts, histograms, pie charts, plots) to display quantitative simulation performance measures

AweSim

AweSim Overview (II)

- Incorporates the *Visual SLAM* modeling technology
 - Visual simulation language for alternative modeling
 - AweSim provides a simulation problem-solving environment for Visual SLAM
 - Based on Windows and designed to integrate easily with other Windows applications
 - Easily move input data from Excel worksheet to AweSim input tables
 - Graphical & textual information from AweSim database (output table) can be exported to other Windows package (Excel, Word) for additional analysis and documentation

AweSim Overview (III)

Dr. Xing

AweSim

Project Framework

- An AweSim project \rightarrow an engineering task/problem
 - A project contains all information describing the problem you are solving
- A project consists of one or more scenarios
 - Each scenario represents a particular system alternative
 - People usually work with more than one scenario on a project
 - Each scenario includes network, subnetwork, control, user data, user inserts and animation components (Table 1.1 / Figure 1)
 - Component builders (software programs) are accessed via the Components menu items or via the component's pushbutton.

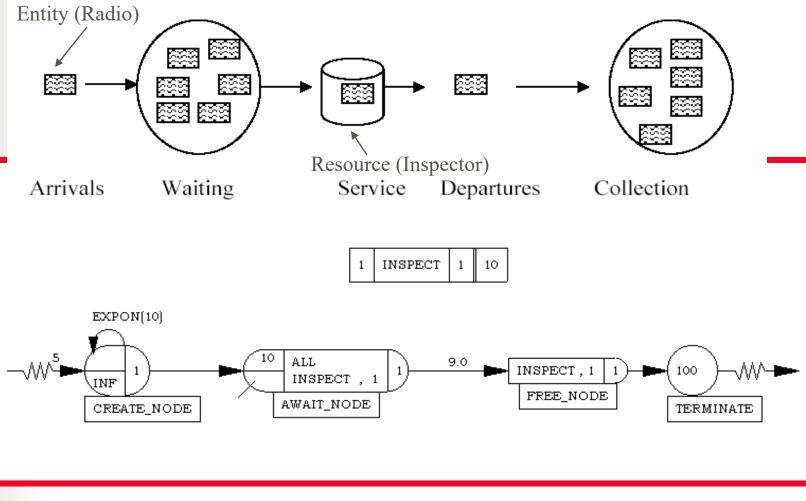
Figure 1: The AweSim Executive Window with the Illustration of Scenario Components

🚨 AweSim! - MODELS		
Project <u>S</u> cenario <u>C</u> ompone	ents Si <u>m</u> ulate <u>R</u> eport <u>O</u> p	tian: <u>T</u> ool: <u>H</u> elp
	D 📲 🥌 🤋 😢	
Scenario: EX81		
Networks	Controls	User Inserts
NEX81	CEX81	
		User Data
		INVENTRY
Subnetworks	Animalions	
SNEX81		Notes
Description:		
Multiple Item Inventory Syste	m	
1		
For Help, press F1		

The current project under study is identified in the title bar.

The Current Scenario Box shows the model components associated with the scenario presently being analyzed.

AweSim Basic Network Modeling

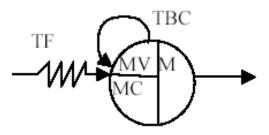

Objectives

Learn the function and syntax of basic AweSim network nodes

CREATE TERMINATE GOON RESOURCE ACTIVITY AWAIT COLCT ASSIGN FREE

- Learn the function and syntax of basic AweSim control statements
 GEN LIMITS INIT NETWORK FIN
- Develop and run an AweSim model using these constructs within AweSim.

Single Server Queueing System Example

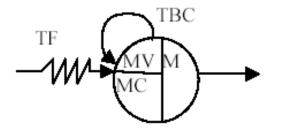


Dr. Xing

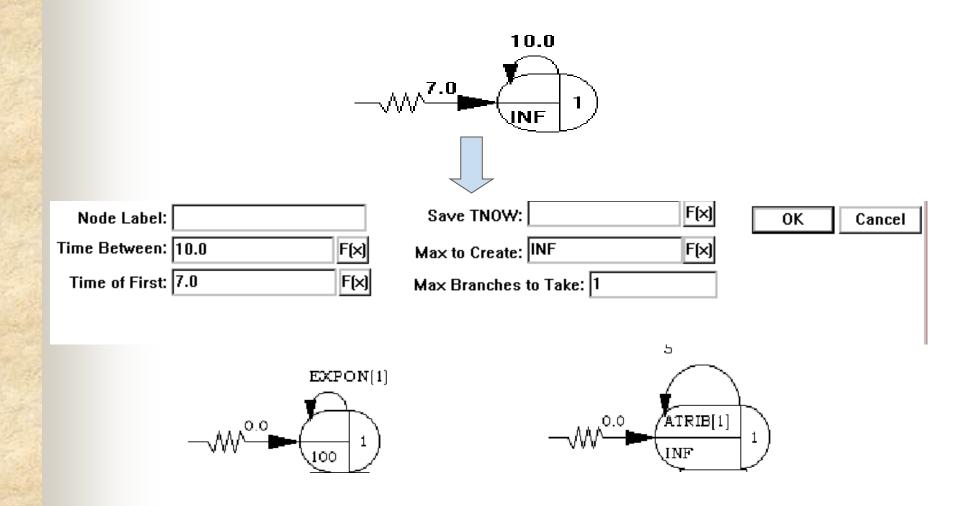
AweSim

CREATE Node

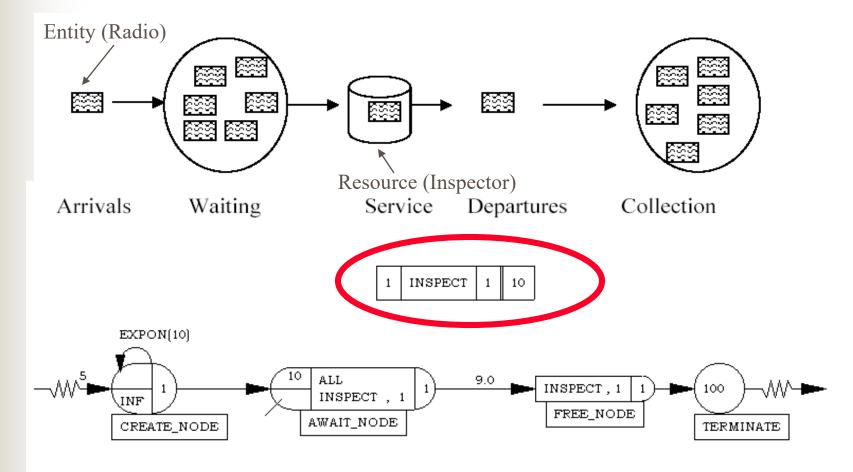
TF: time the first entity enters the system TBC: time between creations of entities MV: variable used to maintain mark time MC: maximum number of entities to create



M: maximum number of branches an entity can be routed from node


- Creates a new entity within the network at intervals defined by *TBC* (Time Between Creations)
- Can save the arrival time as an entity attribute

CREATE Node Explanation


The node is released initially at time *TF* and thereafter according to the specified time between creation *TBC*, up to a maximum of *MC* releases. At each release a maximum of *M* emanating activities are initiated. Time of creation is stored in variable *MV* if one is defined

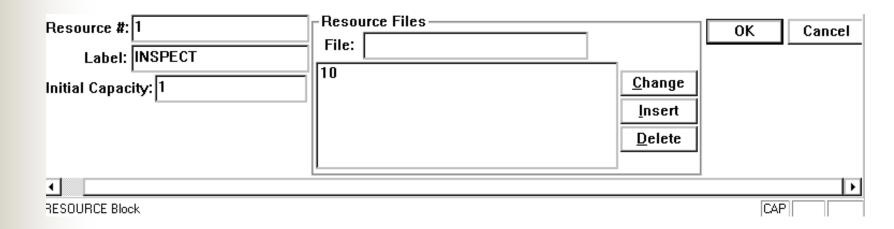
CREATE Node Examples

Single Server Queueing System Example

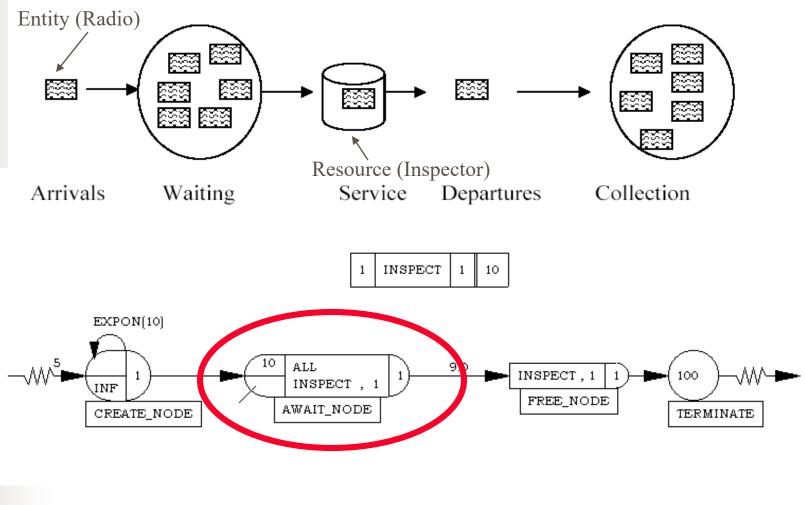
RESOURCE Block

- RNUM: Resource number (e.g. 3)
- RLBL: Resource label

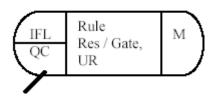
RNUM RLBL CAP IFL Repeats


- CAP: Number of units of the resource initially available
- IFL: File to poll for entities waiting for a resource

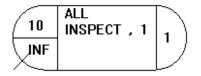
Repeats: additional files associated with the resource


- Can be identified by name (*RLBL*) or number (*RNUM*)
- Has no inputs or outputs as no entities flow through it
- Used by AWAIT, PREEMT, FREE, ALTER nodes to identify resource types associated with a node

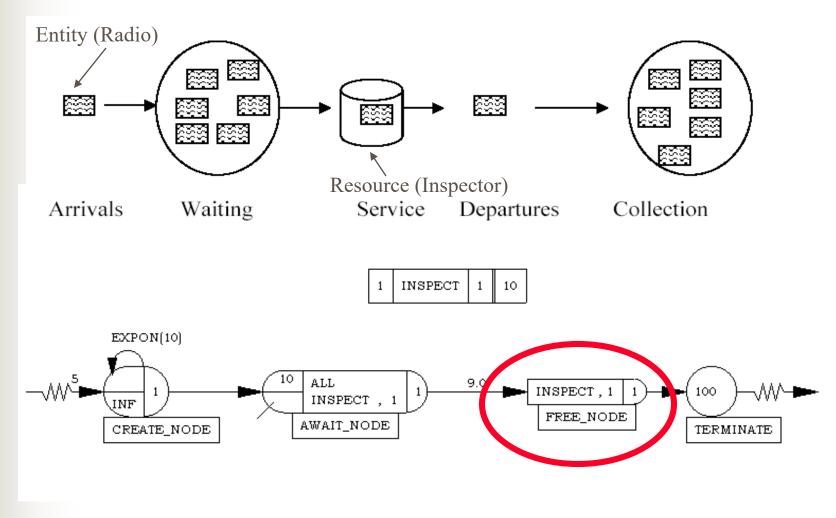
RESOURCE BLOCK Example



Single Server Queueing System Example


AweSim

AWAIT Node

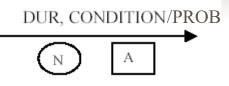

- Used to store entities waiting for *UR* units of resource to be available or gate to open (use resource or gate label names)
- Arriving entities are placed in file *IFL*
- *QC* specifies the queueing capacity of the node
- *Rule* specifies the resource allocation rule
- M specifies the maximum branches leaving entities can take

AWAIT Node Example

Node Label: File #: 10	File Capacity:	
Allocations	Max Branches to Take: 1	
Resource, Gate, INSPECT,1	Change Full Action	0K
or Group:	Insert O None O Block	<u></u>
Units of Res.: F(x)	Delete O Balk:	Cance
How to Allocate • All O One: F(x) O Alloc:	Label of this node. Used for branching a F(x) reports	and
AWAIT Node	CAP	

Single Server Queueing System Example

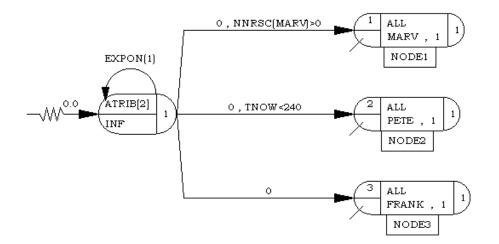
FREE Node


Dr. Xing

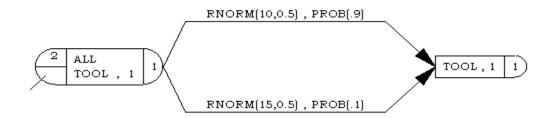
- Used to release resources previously allocated at an AWAIT node when an entity arrives at the node
- Also checks the list of AWAIT nodes to see if reallocation is possible
- Every entity arriving at a FREE node releases *UF* units of *RES* resource
- A maximum of *M* emanating activities can be initiated from the node
- Example: INSPECT 1 Max Branches to Take: 1 Node Label: 0K Cance Resources to Free INSPECT,1 Change **Resource:** List of resources and Insert F(x) Units of Res.: amount to free Delete FREE Node CAP

AweSim

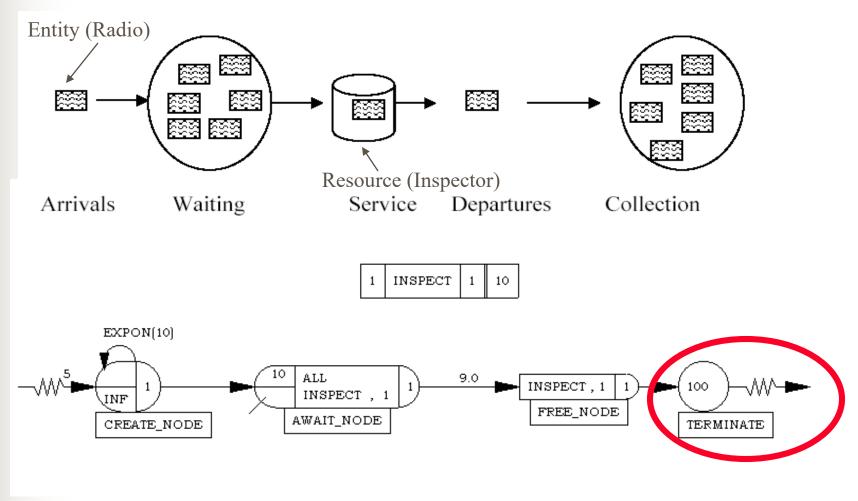
ACTIVITY

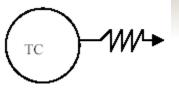


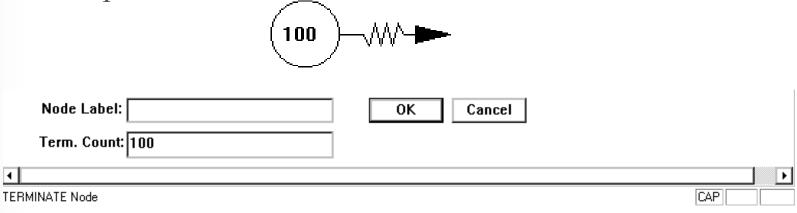
- Branches are used to model activities which allow for the specification of time delays and routes for entities flowing in the network
- *DUR* specifies the duration of the activity using either explicit time or a distribution
- CONDITION/PROBABILITY specifies under what circumstance / probability a particular branch will be traversed by an entity
- N represents the number of parallel identical servers if the activity represents servers
- *A* is the activity number within the model


Example:	RNORM(10,0.5)	
Activity #: 1 Duration: RNORM(18,0 Condition:	End Node Label: .5) F(x) # of Servers: F(x) Identifier: "INSPECT ACTIVITY"	F(x) OK Cancel
Dr. Xing	AweSim	

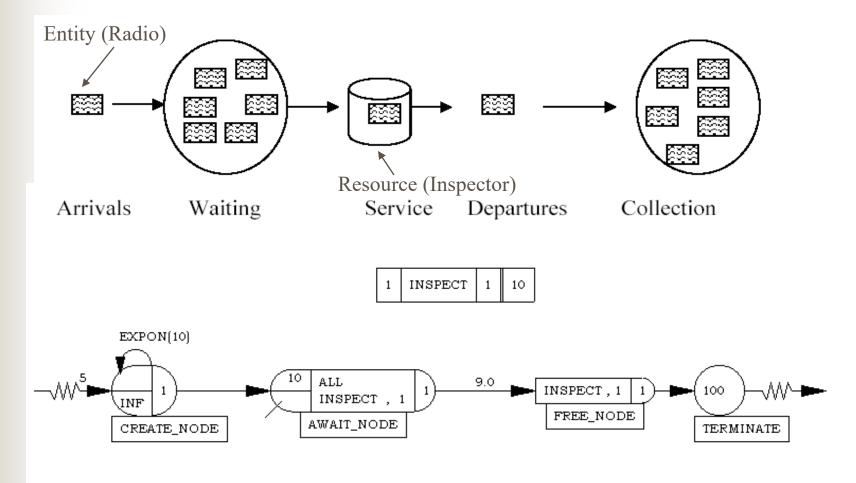
More ACTIVITY Examples


Conditional branching


Probabilistic branching


Single Server Queueing System Example

TERMINATE Node

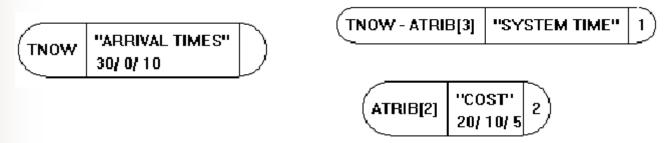

- Used to destroy or delete entities from the network
- TC represents the number of entities to terminate to end the simulation
- Can associate a node label with the node
- Example:

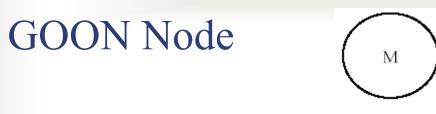
Revisit "Radio Inspection Example"

4

Revisit "Radio Inspection Example"

COLCT Node


• To collect an observed statistics when an entity arrives at this point in the network


- *Value* represents the expression or variable to collect information on
- *ID* is used as the identifies for the collect node
- *H* is used to indicate that a histogram is to be built
 - Using 3 parameters: number of cells, low cell limit, cell width
- M indicates the maximum number of branches to take from the node

COLCT Node Examples

(TNOW-ATR	IB[3] "SYSTEM TIME" 1	
Node Label: COLCT #: Value: TNOW-ATRIB[3] F(×) Identifier: "SYSTEM TIME"	Histogram Information # of Cells: Lower Limit: Cell Width:	OK Cancel Max Branches to Take: 1
•		•
COLCT Node		CAP

More example:

- Provides a continuation node where every entering entity passes directly through the node
- A maximum of *M* emanating activities are initiated
- A "placeholder" node used for branching or for separating activities
- Act like a simple router
- Examples:

npies:	(2 GOON	
Node Label: GOON Max Branches to Take: 2		OK Cancel
•		
300N Node		

- Used as a method to assign values to entity attributes as they pass through the node
- Can also be used to assign values to system variables at each arrival of an entity to the node
- *VAR* defines Visual SLAW global or entity variable
- The type of *Value* (expression) must agree with the variable being assigned
- A maximum of *M* emanating activities are initiated

ASSIGN Node – Left-Hand Side Variables

Entity VariablesATRIB[I]Real valued attribute of current entityLTRIB[I]Integer valued attribute of current entitySTRIB[I]String valued attribute of current entity

<u>Global Variables</u> XX[I] LL[I] SZ[I] ARRAY[I,J] SS[I] DD[I] STOPA

Real system or global array Integer system or global array String system or global array System doubly-subscripted array State variable I Derivative of SS[I] Assignment to stop activities

Basic System Variables

TNOW NNACT(I) NNCNT(I) NNQ(I) NNRSC(RLBL) NRUSE(RLBL) FIRSTARRIVE LASTARRIVE

Current time

Number of active entities in activity I at current time The number of entities that have completed activity I Number of entities in file I at current time Current number of units of resource type RLBL available Current number of units of resource type RLBL in use Time of the first entity arrival at a COLCT node Time of the most recent arrival at a COLCT node

ASSIGN Node Example

ATRIB[2] = 7.0	\square
ATRIB[3] = ATRIB[3]/XX[2]	1)
XX[1] = RNORM(4.0,2.0)	\square

Node Label:	Max Branches to Take: 1	OK Cance
Assignments	ATRIB[2],7.0 F(X)	<u>C</u> hange Insert
· [<u>F(x)</u>	
ASSIGN Node		CAP

Agenda- AweSim Basic Network Modeling

Objectives

- Learn the function and syntax of basic AweSim network nodes
 CREATE AWAIT
 TERMINATE COLCT
 GOON ASSIGN
 RESOURCE FREE
 ACTIVITY
- Learn the function and syntax of basic AweSim control statements
 GEN LIMITS INIT NETWORK FIN
- Develop and run an AweSim model using these constructs within AweSim.

Control Statement

- Each scenario has an associated set of Visual SLAM control statements called a "control"
- The control provides the general information needed to simulate the model
 - How long the model should run
 - Initial conditions
 - Output options
 - File characteristics
 - etc

GEN Control Statement

- The first statement in a set of Visual SLAM input
- Provides general information identifying the model
 - The number of executions
 - Certain global flags
- Input format
 - GEN, "NAME", "PROJECT", DATE, NNRNS, IXQT, IWARN, MXERR;
 - Example
 - GEN, "Pritsker", "TV INSP. AND ADJUST", 6/13/96,1,YES,YES;
 - GEN, "Pritsker", "TV INSP. AND ADJUST", 6/13/96;

-	GEN Control
Name:	"Pritsker"
Project:	"TV INSP. AND ADJUST"
Date:	6/13/96
# of runs	: 1
	Attempt Execution
	● Yes ○ No
	 Warn of Destroyed Entities
	● Yes ○ No
Ma× Erro	
	OK Cancel

LIMITS Control Statement

- Used to define the size of global variable arrays and the number of attributes defined for each entity
- The LIMITS statement must precede any use of the global arrays
- The limits for each array may be a constant or a global expression
- Input format
 - LIMITS,MXX,MLL,MSZ,MATRIB,MLTRIB,MSTRIB,MNTRY
 - Example: LIMITS,5,,,50;

LIMITS Control	_
Globals	
Max XX: 5	
Max LL: -1	
Max SZ: -1	
Attributes	
Max ATRIB: 5	
Max LTRIB: -1	
Max STRIB: -1	
Max Entities: 50	
OK	

INITIALIZE Control Statement

- Used to specify the beginning and ending times for a simulation and to reset initialization options for clearing statistics
 - Input format
 - INITIALIZE,TTBEG,TTFIN,JJCLR,NCCLR;
 - Example: INITIALIZE,,365,NO,2;

	INITIALIZE Control
Begin Time:	0.0
Finish Time:	365.0
Up to COLCT	ear statistics between runs Yes No #: 2 K Cancel

NETWORK Control Statement

- Used to denote the beginning of a network description
- Input processing may take a significant amount of time for large models, it's convenient to bypass this processing when the network does not change from run to run
- Input formats
 - NETWORK, OPTION, FILE;
- Examples
 - NETWORK;
 - NETWORK, SAVE, "NET1.DAT";
 - NETWORK,LOAD, "NET1.DAT";

FIN Control Statement

- Denotes the end to all Visual SLAM input statements; all remaining simulation runs will be executed without further data input by Visual SLAM
- Input format
 - FIN;

Agenda- AweSim Basic Network Modeling

Objectives

- Learn the function and syntax of basic AweSim network nodes
 CREATE AWAIT
 TERMINATE COLCT
 GOON ASSIGN
 RESOURCE FREE
 ACTIVITY
- Learn the function and syntax of basic AweSim control statements
 GEN LIMITS INIT NETWORK FIN
- Develop and run an AweSim model using these constructs within AweSim – ask for Dr. Xing for software if you are interested in it!