PYujmzm L equckion /\’\’” v { AMLJ e v) : '])mj‘-mm Ce’]?ffm"fe‘rs

(pm E_—.?(QMYLQ S v &w)

o am _ There are many reasons for momtormg the execution of a program. Some of
these are the following:

* Tracing: To find the execution path of a program.
* Timing: To find the time spent in various modules of the Program.
* Tuning: To find the most frequent or most time-consuming sections of

the code.
Original Add { Instrumented
program instrumentation program

Run instrumented
program

Execution
profiles

FIGURE 8.1 Steps in program execution monitoring.

+ Assertion Checking: To verify the relationships assumed amoag the vari-
ables of a program.
» Coverage Anaiysis: To determine the adequacy of a test run.

Notice that not all applications of program execution monitors are related .
to the program’s performance, although that may be the most common use of.
these monitors.

The programs to be monitored and improved should be chosen based on
a numzber of criteria. The first criterion is the timne criticality. Some programs
are very time critical, and it is important to find out where the time is being
spent so that the response can be improved. The second criterion is frequency
of use. Programs used with high frequency should be aptimized first. Finally,
programs consuming the highest percentage of resources should be optimized.
The resources include CPU time, [/O time, or elapsed (people) time. The
most expensive resource should be optimized first. With the decreasing cost
of computing resources, the people time is becoming the most expensive re-
source and may need to be optimized first.

Figure 8.1 shows the typical steps invoived in program execution monpitor- -
ing. First, instrumentation {or hooks) are added to the target program. The
instrumented program is then run under the cantrol of the execution monitor.
Finally, the reports generated by the monitor are examined. Often the pre-
cedure is repeated several times and new instrumentation is added as more
information about the execution profile of the program is obtained. ‘

sas s IR R do Mot b £ =3 bbbl 1o [t bridgd 30t S0 btir i s anlizpi 2 o dastind

3 -

R X

.

8.1.1 Issues in Designing a Program Execution Monitor

I I RY

In designing an execution monitor, most of the issues 1o be considered are
similar to those discussed in Section 7.3.1 on software monitor design. In ad-
dition, there are a number of issues that are specific to program execution
monitors. These issues are as follows:

1. Measurement Unit: The execution monitor divides the program into
smaller measurement units such as modules, subroutines, high-level lan-
guage statements, or machine instructions. The data related to the execu-

H [EHE SR

(ov zﬂ




SN P -3 S il [P H XA e 3 L ey -

tion of each unit is recorded and shown in the final report. The lower
the level of the unit, the more the overhead of monitoring. Lower level
reports (such as machine instruction execution profiles) may be too de-
tailed for some applications. Some monitors use higher level language
staternents, such as COBOL or PL/I statements, a5 a measurement unit,
but then they also become language dependent. As a result, a program -
written in a mix of languages may not be correctly observed by such
monitars.

2. Measurement Technigue: The two basic measurement techniques are
tracing and sampling. Tracing can be performed by using either explicit
hooks such as trap instructions or by the trace mode of the processor.
Using the trace mode produces 100 much unwanted datz and is suitable
only for monitors operating at machine instruction level. The sampling
monitors make use of the system timer facilities and record the program .
states at periodic intervals. The interval may be specified in terms of
CPU time or in terms of elapsed time. If CPU time sampling is used,
the program is always found in the execution state. On the other hand,
if elasped time sampling is used, the program may be in a wait state,
waiting for /O completion or for some other event.

. Instrumeniation Mechanism: A program has to be compiled and linked
before it can be executed. The instrumentation can be added before
compilation, during compilation, after compilation (before linking), or
during run time. In other words, & program can be instrumented by
augmenting the source code, the compiler-generated object code, the
run time environment, the operating system, or the hardware. Often,
a combination of these techniques is used. Source code instrumentation
requires the addition of high-level procedure call statements at strate-
gic locations in the program. The call statements transfer control to the
monitor routines, which coltect the data. Run time instrumentation is ac-
complished by adding a sampling monitor to the run time environment
of the program.

Execution monitors may alse make use of additional information. For
example, the link-edit map produced by the linker is an excellent source
of symbol-to-address map that is used by most execution monitors.

. Profile Report: Most program monitors produce an execution profile
showing a frequency and time histogram. For large programs, several .
surnmaries at different levels of hierarchy may be presented; for exam-
ple, summaries by modules, and then for each module by procedures,
and for each procedure by statements. The procedure profiles may dis-
tinguish between resources used directly by & procedure andethose used
by a subprocedure that was invaked by it. For CPU time, these resources
are called seif-time and inherited time, respectively. Many monitors

‘ h?v'e the ability to limit or expand (zoom in or zoom out) the amount

of detajl, . ‘




