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Solution to Hands-on 
Problems
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Example Stochastic Processes 
(Slide7)

• Number of commands received by a time-
sharing system during time interval (0 , t1)

– {X(t), 0 < t < t1}
– Continuous parameter,  Discrete state

• Number of students attending the nth 
lecture
– { Xn, n = 1, 2, 3, 4, . . .}
– Discrete parameter, Discrete state

• Average time to run a batch job at a 
computing center on the nth day of the 
week.
– { Xn, n = 1, 2, 3, 4, . . ., 7}
– Discrete parameter, Continuous state

• The waiting time of an inquiry message 
that arrives at time t, until processing is 
begun
– { X(t), t >= 0}
– Continuous parameter, Continuous state
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o(h) notation (Slide 17)

– Application of o(h)

Suppose X is an Exp. r.v. with parameter λ, its c.d.f.:

What is the prob. that X is less than t+h given that 
it is greater than t?
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Hands-on Problems 
(Slides 23, 24)

• What is the mean time between failures?  
P[ τn ≤ t ] = 1 - e -λt where,   λ = 0.6 / day
E[ τn ] = 1 / λ = 1.666 . . . days = 39.99. . . Hours

• The number of failures in a “t”-day interval has 
the Poisson distribution with a mean of λt=0.6t. 
What is the probability of exactly one failure in 
a 24-hour period?

Pk (t)= P[Yt = k] =  e -λt (λt)k  /k!
For t = 24 hours = 1day, k = 1 failure

• What is the probability of less than 5 failures in 
a week?
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Hands-on Problems 
(Slides 23, 24)

• Starting from a random point in time, what is 
the probability that no failure will occur 
during the next 24 hours?

• Suppose exactly 24 hours has elapsed with no 
failures. What is the expected time until the 
next failure?
The time between failure is exponentially 
distributed, by memory-less property  1.66..days 
or 39.99…hours

• Four out of every five failures is a terminal 
problem, with equal probability on each 
failure. What is the process describing the 
terminal failure?
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Hands-on Problems 
(Slides 23, 24)

• What is the mean time between terminal 
failures?

• Thus, the number of terminal failures in t days 
has the Poisson distribution with a mean of 
0.48t. What is the probability of k terminal 
failures in a t-day interval?
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Hands-on Problems (Slide 31)

• Consider a queuing system with one server 
and no waiting line. And assume
– Poisson arrivals with rate λ
– Exponential service with rate μ
The state transition diagram is:

Find  P0,  P1?
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Balance equations:

So, 
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