# Solution to Hands-on Problems 

## Example Stochastic Processes (Slide7)

- Number of commands received by a timesharing system during time interval $(0, \mathrm{t} 1)$
$-\{\mathrm{X}(\mathrm{t}), 0<\mathrm{t}<\mathrm{t} 1\}$
- Continuous parameter, Discrete state
- Number of students attending the $n$th lecture

$$
\begin{aligned}
& \text { - }\left\{\mathrm{X}_{\mathrm{n}}, \mathrm{n}=1,2,3,4, \ldots\right\} \\
& \text { - Discrete parameter, Discrete state }
\end{aligned}
$$

- Average time to run a batch job at a computing center on the $n$th day of the week.

$$
-\left\{X_{n}, n=1,2,3,4, \ldots, 7\right\}
$$

- Discrete parameter, Continuous state
- The waiting time of an inquiry message that arrives at time $t$, until processing is begun

$$
-\{\mathrm{X}(\mathrm{t}), \mathrm{t}>=0\}
$$

- Continuous parameter, Continuous state


## $o(h)$ notation (Slide 17)

## - Application of $o(h)$

Suppose $X$ is an Exp. r.v. with parameter $\lambda$, its c.d.f.:

$$
F_{X}(h)=P\{X \leq h\}=1-e^{-\lambda h}
$$

What is the prob. that X is less than $\mathrm{t}+\mathrm{h}$ given that it is greater than t ?

$$
\begin{aligned}
& P\{X \leq t+h \mid X>t\}=P\{X \leq h\} \\
& =1-e^{-\lambda h}=1-\left[1-\lambda h+\sum_{n=2}^{\infty} \frac{(-\lambda h)^{n}}{n!}\right] \\
& =\lambda h-(\lambda h)^{2} \sum_{n=2}^{\infty} \frac{(-\lambda h)^{n-2}}{n!}=\lambda h+o(h)
\end{aligned}
$$

## Hands-on Problems (Slides 23, 24)

- What is the mean time between failures?

$$
\begin{aligned}
& \mathrm{P}\left[\tau_{\mathrm{n}} \leq \mathrm{t}\right]=1-\mathrm{e}^{-\lambda t} \text { where, } \lambda=0.6 / \text { day } \\
& \mathrm{E}\left[\tau_{\mathrm{n}}\right]=1 / \lambda=1.666 \ldots \text { days }=39.99 \ldots \text { Hours }
\end{aligned}
$$

- The number of failures in a " t "-day interval has the Poisson distribution with a mean of $\lambda \mathrm{t}=0.6 \mathrm{t}$. What is the probability of exactly one failure in a 24 -hour period?

$$
P_{k}(t)=P\left[Y_{t}=k\right]=e^{-\lambda t}(\lambda t)^{k} / k!
$$

For $\mathrm{t}=24$ hours $=1$ day, $\mathrm{k}=1$ failure

$$
\begin{aligned}
P\left[Y_{t}=1\right] & =e^{-\lambda 1} \frac{(\lambda 1)^{1}}{1!}=e^{-0.6}(0.6) \\
& =0.5488^{*} 0.6=0.3293
\end{aligned}
$$

- What is the probability of less than 5 failures in a week?

$$
\begin{aligned}
P\left[Y_{7}<5\right] & =\sum_{k=0}^{4} P\left[Y_{7}=k\right]=\sum_{k=0}^{4} e^{-\lambda * 7} \frac{(\lambda * 7)^{k}}{k!} \\
& =\sum_{k=0}^{4} e^{-0.6^{* 7}} \frac{\left(0.6^{*} 7\right)^{k}}{k!}=0.5898
\end{aligned}
$$

## Hands-on Problems (Slides 23, 24)

- Starting from a random point in time, what is the probability that no failure will occur during the next 24 hours?

$$
\begin{aligned}
P\left[Y_{1}=0\right] & =P\left[\tau_{n}>1 \text { day }\right]=e^{-\lambda t} \frac{(\lambda t)^{0}}{0!} \\
& =e^{-0 . *^{* * 1}}=0.5488
\end{aligned}
$$

- Suppose exactly 24 hours has elapsed with no failures. What is the expected time until the next failure?
The time between failure is exponentially distributed, by memory-less property $\rightarrow$ 1.66..days or 39.99 ...hours
- Four out of every five failures is a terminal problem, with equal probability on each failure. What is the process describing the terminal failure?

$$
P_{t e r \min a l} \lambda=(4 / 5) * 0.6=0.48 \text { per day }
$$

Terminal failures :
All component


## Hands-on Problems (Slides 23, 24)

- What is the mean time between terminal failures?

$$
1 / \lambda_{\text {ter minal }}=1 / 0.48=2.0833 \ldots \text { days }
$$

- Thus, the number of terminal failures in $t$ days has the Poisson distribution with a mean of $0.48 t$. What is the probability of $k$ terminal failures in a t-day interval?

$$
P\left[Y_{t}=k\right]=e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}=e^{-0.48^{*} t} \frac{\left(0.48^{*} t\right)^{k}}{k!}
$$

## Hands-on Problems (Slide 31)

- Consider a queuing system with one server and no waiting line. And assume
- Poisson arrivals with rate $\lambda$
- Exponential service with rate $\mu$

The state transition diagram is:


Find $\mathrm{P}_{0}, \mathrm{P}_{1}$ ?

Balance equations: $\lambda P_{0}=\mu P_{1}$
and

$$
P_{0}+P_{1}=1
$$

So,

$$
P_{0}=\mu / \lambda+\mu \quad P_{1}=\lambda / \lambda+\mu
$$

