

Administration Issues

$$
(2 / 21, \text { Wed. })
$$

- Homework \#3
- Due: Today
- Project proposal (refer to Guidelines)
- Due: February 23, Friday
- Today's topics
- Finish L\#9 (birth-death process)
- Then L\#10 (Markov process)

Review of Lecture \#9

- Stochastic processes: a family of r.v.'s $\{X(\mathrm{t}) \mid \mathrm{t} \in$
$\mathrm{T}\}$ that is indexed by a parameter t

1. Discrete time, stochastic chain
2. Continuous time, stochastic chain
3. Discrete time, continuous state process
4. Continuous time, continuous state process

- Important stochastic processes
- Counting process: a SP representing the

Dr. Xing ©
Markov Processes

Markov Processes

A stochastic process is a Markov process iff
probabilities of future states depend only on the current state and not on how it reached that state
i.e., all influences of the past on the system's future is contained in the current state.

Formal Definition

A stochastic process $\{\mathrm{X}(\mathrm{t}), \mathrm{t} \in \mathrm{T}\}$ is a Markov process if for any set of $n+l$ values $\mathrm{t}_{1}<\mathrm{t}_{2}<$. $\ldots<t_{n}<t_{n+1}$ in the index set T and any set of $\mathrm{n}+1$ states $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right\}$
$\mathrm{P}\left[\mathrm{X}\left(\mathrm{t}_{\mathrm{n}+1}\right)=\mathrm{x}_{\mathrm{n}+1} \mid \mathrm{X}\left(\mathrm{t}_{1}\right)=\mathrm{x}_{1}, \mathrm{X}\left(\mathrm{t}_{2}\right)=\mathrm{x}_{2}, \ldots \mathrm{X}\left(\mathrm{t}_{\mathrm{n}}\right)=\mathrm{x}_{\mathrm{n}}\right]$
$\equiv \mathrm{P}\left[\mathrm{X}\left(\mathrm{t}_{\mathrm{n}+1}\right)=\mathrm{x}_{\mathrm{n}+1} \mid \mathrm{X}\left(\mathrm{t}_{\mathrm{n}}\right)=\mathrm{x}_{\mathrm{n}}\right]$

Note: All birth-and-death processes are Markov Processes. Hence, the Poisson process is a Markov Process

Dr. Xing ©
Markov Processes
6

Definitions

Markov Chains

- A discrete state Markov process is called a Markov
chain.
- States can be labeled $\left\{\mathrm{E}_{0}, \mathrm{E}_{1}, \mathrm{E}_{2}, \ldots\right\}$
- Typically the states are just denoted using non-
negative integers $\{0,1,2, \ldots\}$, where state i corresponds with E_{i}.
- A discrete time Markov chain makes state transitions at times $\mathrm{t}_{\mathrm{n}}, \mathrm{n}=1,2,3, \ldots$ (possibly into the same state)

Notation: $\left\{\mathrm{X}\left(\mathrm{t}_{\mathrm{n}}\right), \mathrm{n}=0,1,2, \ldots\right\} \rightarrow\left\{\mathrm{X}_{\mathrm{n}}\right\}$

One-step state transition probabilities:

$$
P\left[X_{n+1}=j \mid X_{n}=i\right], n, i, j=0,1,2, \ldots
$$

Homogeneous Markov Chains

State Transition Probability Matrix
(One-Step)
Markov chains for which the one-step transition probabilities are independent of time index n, i.e.,

$$
\begin{aligned}
& P\left[X_{n+1}=j \mid X_{n}=\right.i]=P\left[X_{m+1}=j \mid X_{m}=i\right] \\
&=P_{i j} \quad \forall m, n, i, j
\end{aligned}
$$

Such a MC is said to have stationary transition probabilities or to be homogeneous in time.

Hands-On Problem

- Consider a discrete-time "Markov chain" expressed by the following state transition diagram

a) Set up the one-step state transition probability matrix P of the "Markov chain".
b) Is this a valid Markov chain? If not, make the least changes without adding more transitions to make the Markov chain become valid.

Discrete-Time MC: Example I

- Consider a sequence of Bernoulli trials, for each trial
- Success probability is p
- Failure probability is $q=1-p$

Assume X_{n}-- the state of the process at trial n, is the number of uninterrupted successes that have been completed at this point, i.e., the length of consecutive successes.
Find the state transition probability matrix and state transition diagram.

$$
\begin{array}{rllllllllll}
\text { Trial } & \text { F } & \text { S } & \text { S } & \text { F } & \text { F } & \text { S } & \mathbf{S} & \mathbf{S} & \mathbf{F} \\
\mathbf{n}= & \mathbf{0} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Dr. Xing ©

State Transition Probability Matrix
(n-Step)

- n-step transition probabilities

$$
P_{i j}^{(n)}=P\left[X_{n}=j \mid X_{0}=i\right]
$$

For homogeneous MC

$$
P_{i j}^{(n)}=P\left[X_{m+n}=j \mid X_{m}=i\right], \quad \forall m \geq 0, n>0
$$

And

$$
\begin{aligned}
& P_{i j}^{(1)}=P_{i j} \\
& P_{i j}^{(0)}=\delta_{i j}=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { if } i \neq j
\end{array}\right. \text { Kronecker Delta function }
\end{aligned}
$$

- Denote the matrix of n-step transition probabilities by

$$
P^{(n)}=\left[P_{i j}^{(n)}\right]
$$

Then

$$
P^{(n)}=P^{(n-1)} P=P^{n}
$$

State Transition Probability Matrix
(n-Step) (Proof)

- Why $P^{(n)}=P^{(n-1)} P=P^{n}$?

$$
P_{i j}^{(n+m)}=P_{\{ }\left\{X_{n+m}=j \mid X_{0}=i\right\}
$$

$$
=\sum_{k=0}^{\infty} P\left\{X_{n+m}=j, X_{n}=k \mid X_{0}=i\right\}
$$

$$
=\sum_{k=0}^{\infty} P\left\{X_{n+m}=j \mid X_{n}=k, X_{0}=i\right\} P\left\{X_{n}=k \mid X_{0}=i\right\}
$$

$$
=\sum_{k=0}^{\infty} P_{i k}^{(n)} P_{k j}^{(m)} \quad \forall n, m, i, j \geq 0
$$

-- Chapman-Kolmogorov equations
In particular, when $m=1$

$$
\begin{array}{ll}
P_{i j}^{(n+1)}=\sum_{k=0}^{\infty} P_{i k}^{(n)} P_{k j} & n=1,2, \ldots, \forall i, j \geq 0 \\
i . e ., P_{i j}^{(n)}=\sum_{k=0}^{\infty} P_{i k}^{(n-1)} P_{k j} & n=2,3, \ldots, \forall i, j \geq 0 \\
P^{(n)}=\left[P_{i j}^{(n)}\right] \quad \square & P^{(n)}=P^{(n-1)} P=P^{n}
\end{array}
$$

Dr. Xing ©

Markov Chains (Cont'd)

- Let $\Pi_{j}(n)$ represent the probability of being in state j at the nth step (transition), i.e.

$$
\Pi_{\mathrm{j}}(\mathrm{n})=\mathrm{P}\left[\mathrm{X}_{\mathrm{n}}=\mathrm{j}\right]
$$

- In vector notation:

$$
\Pi(\mathrm{n})=\left(\Pi_{0}(\mathrm{n}), \Pi_{1}(\mathrm{n}), \ldots \Pi_{\mathrm{m}-1}(\mathrm{n})\right)
$$

One-step transition probability matrix:
$P_{m \times m}=\left[P_{i j}\right]=\left[\begin{array}{ccccc}P_{00} & P_{01} & P_{02} & \ldots & P_{0 m-1} \\ P_{10} & P_{11} & P_{12} & \ldots & P_{1 m-1} \\ : & : & : & & \vdots \\ P_{m-10} & P_{m-11} & P_{m-12} & \ldots & P_{m-1 m-1}\end{array}\right]$

$$
\Pi(\mathrm{n})=\Pi(\mathrm{n}-1) \times \mathrm{P}
$$

$$
\Pi(\mathrm{n})=\Pi(0) \mathrm{P}^{\mathrm{n}}
$$

Discrete-Time MC: Example II
A communication system transmits the digit 0 and 1 through several stages. At each stage, there is a probability of 0.75 that the output will be the same digit as the input.

What is the probability that a 0 that is entered at the first stage is output as a 0 from the $4^{\text {th }}$ stage?

Irreducible Markov Chains

- State j of a Markov chain $\left\{\mathrm{X}_{n}\right\}$ is said to be reachable from state i if it is possible for the chain to proceed from state i to state j in a finite number of transitions, i.e.

$$
P_{i j}^{(n)}>0, \quad \text { for some } n \geq 0
$$

- Two states i and j are to communicate if i is reachable from j and j is reachable from i.
- If every state is reachable from every other state, the chain is said to be irreducible.

Dr. Xing ©

Examples

- Bernoulli trials example

- Communication system example

Irreducible!

- Another example

Reducible!

Dr. Xing ©
Markov Processes

Irreducible Markov Chain?

- Can tell easily from the state transition diagram
- Given the probability transition matrix P , take n-th power of P , if for some n, a positive matrix (all items >0) is obtained, which means that a transition can be made between any two states in n steps \rightarrow Markov chain is irreducible.
- Example 4.4.4 in Allen

Aperiodic Markov Chains

- The period of state $i, d(i)$, is the greatest common divisor of the set of all positive integers n such that $P_{i i}^{(n)}>0$
- If $P_{i i}^{(n)}=0, \forall n \geq 1$, define $\mathrm{d}(\mathrm{i})=0$
- If $d(i)>1$, state i is said to be periodic
- If $d(i)=1$, state i is said to be aperiodic
- A state i for which $P_{i i}>0$ has period of 1
- A Markov chain is aperiodic if every state has period 1 (is aperiodic)

Examples

- Every state is aperiodic

- Every state is periodic with period 2

$$
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Dr. Xing ©

Recurrent Markov Chains

- For each state i, define $f_{i}^{(n)}$ to be the probability that the first return to state i occurs, n steps (transitions) after leaving i, i.e.,

$$
f_{i}^{(n)}=P\left[X_{n}=i, X_{k} \neq i \text { for } k=1,2, \ldots, n-1 \mid X_{0}=i\right]
$$

Define: $f_{i}^{(0)}=1, \forall i$
Then, the probability of ever returning to state i is given by

$$
f_{i}=\sum_{n=1}^{\infty} f_{i}^{(n)}
$$

- If $f_{i}<1$, then state i is a transient state
- If $f_{i}=1$, then state i is a recurrent state
- Mean recurrence time of i, i.e., the average time (steps) to return to state i is

$$
m_{i}=\sum_{n=1}^{\infty} n f_{i}^{(n)}
$$

- If $m_{i}=\infty$, state i is said to be recurrent null
- If $m_{i}<\infty$, state i is said to be positive recurrent or recurrent non-null.

Dr. Xing ©
Markov Processes

Ergodic Markov Chains

- A discrete-time Markov chain is said to be ergodic if it is
- irreducible: you can get from every state to every other
- aperiodic: every state has period 1. For each state there are paths back to that state of various lengths, i.e., not all multiples of the same integer $k>1$.
- for which all states are positive recurrent: for each state, upon leaving the state you will return with probability 1 and within a finite mean time.

A finite-state Markov chain that is irreducible and aperiodic is ergodic.

Dr. Xing ©
Markov Processes
24

Probability Distribution of MC

- Let $\Pi_{j}(n)$ represent the probability that discrete time Markov chain $\left\{\mathrm{X}_{n}\right\}$ is in state j at the nth step (transition), i.e. $\Pi_{j}(n)=\mathrm{P}\left[\mathrm{X}_{n}=j\right]$
- Initial distribution of state j is $\Pi_{\mathrm{j}}(0)=\mathrm{P}\left[\mathrm{X}_{0}=j\right]$, $j=0,1, \ldots$
- A discrete Markov chain is said to have a stationary probability distribution $\Pi=\left(\Pi_{0}, \Pi_{1}, \Pi_{2}, \ldots\right)$ if
$-\Pi_{j}(0)=\Pi_{j}(n)=\Pi_{j}, \quad \forall_{j} \forall_{n}$
- Equivalently, the matrix equation $\Pi=\Pi^{*} \mathrm{P}$ is satisfied.
- Requirements

$$
\Pi_{i} \geq 0 \quad \forall_{i} \text { and } \sum_{i} \Pi_{i}=1
$$

- A Markov chain is said to have a long-run or limiting probability distribution $\Pi=\left(\Pi_{0}, \Pi_{1}, \Pi_{2}, \ldots\right)$ if

$$
\lim _{n \rightarrow \infty} \Pi_{j}(n)=\lim _{n \rightarrow \infty} P\left[X_{n}=j\right]=\Pi_{j}, j=0,1, \ldots \ldots
$$

Properties of Ergodic MC

- The limiting probabilities

$$
\lim _{n \rightarrow \infty} \Pi_{j}(n)=\Pi_{j}, j=0,1, \ldots \ldots
$$

always exist and are independent of the initial state distribution $\Pi(0)=\left(\Pi_{0}(0), \Pi_{1}(0), \Pi_{2}(0), \ldots\right)$.

- $\Pi=\left(\Pi_{0}, \Pi_{1}, \Pi_{2}, \ldots\right)$ forms a stationary probability distribution and $\Pi_{j}=\mathbf{1} / \boldsymbol{m}_{j}$.
- The limiting distribution is the unique solution to the equations

$$
\Pi=\Pi^{*} \mathrm{P} \text { and } \sum_{i} \Pi_{i}=1
$$

- Stationary probability distribution $=$ Long-run (limiting) probability distribution
Also called "equilibrium" or "steady-state" distribution.

Discrete-Time MC: Example II (Revisit)
A communication system transmits the digit 0 and 1 through several stages. At each stage, there is a probability of 0.75 that the output will be the same digit as the input.

What is the limiting probability that a 0 entered into the first stage is output as a 0 from the $n^{\text {th }}$ stage as $n \rightarrow \infty$?

Balance Equations of MC (1)

- Balance equations

Transition entering $=$ Transition leaving
$\Pi=\Pi Р \Leftrightarrow$ Balance Equations

- Example
- 2-state communication system

Transition leaving $=$ Transition entering
$\Pi_{0} *(0.25+0.75)=\Pi_{0} * 0.75+\Pi_{1} * 0.25$
i.e. $\quad \Pi_{0} * 0.25=\Pi_{1} * 0.25$

Or $\quad \Pi_{0}=\Pi_{1}$

This is the same as the one obtained from $\Pi=\Pi * P$
Dr. Xing ©
Markov Processes

Exercise

Write down the balance equations for the following MC:

Hands-On Problem

- Suppose that in New Zealand, home of the Gala apple, years for these wonderful apples can be described as Great, Average, or Poor. Suppose that following a Great year the probabilities of Great, Average, or Poor years are $0.5,0.3$, and 0.2 , respectively. Suppose also that following an Average year the probabilities of Great, Average, or Poor years are $0.2,0.5$, and 0.3 , respectively. Finally, suppose that following a Poor year the probabilities for Great, Average, or Poor years are $0.2,0.2$, and 0.6 , respectively. Assume we can describe the situation from year to year by a Markov chain with the states 0,1 , and 2 corresponding to Great, Average, and Poor years, respectively.
- Set up the transition probability matrix P of the Markov chain \& draw the state transition diagram.
- Is the Markov chain ergodic? Why or why not?
- Suppose the initial probability for a Great year is 0.2 , for an Average year is 0.5 , and for a Poor year is 0.3 . What is the probability of a Great year after one year?
- What is the probability for a Great year after \boldsymbol{n} year as $n \rightarrow$ infinity?

Dr. Xing ©
Markov Processes
30

Next Topics

- Queueing systems

Things to Do

- Read Allen's Ch. 4

