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ECE560: Computer Systems 
Performance Evaluation

Lecture #10 –
Markov Processes

Instructor: Dr. Liudong Xing
Spring 2024

Administration Issues 
(2/21, Wed.) 

• Homework #3  
– Due: Today

• Project proposal (refer to Guidelines)
– Due: February 23, Friday

• Today’s topics
– Finish L#9 (birth-death process)
– Then L#10 (Markov process)



ECE560

2

Dr. Xing © Markov Processes 3

Review of Lecture #9
• Stochastic processes: a family of r.v.’s {X(t) | t   

T} that is indexed by a parameter t 
1. Discrete time, stochastic chain
2. Continuous time, stochastic chain
3. Discrete time, continuous state process
4. Continuous time, continuous state 

process
• Important stochastic processes

– Counting process: a SP representing the 
number of events of some kind that have 
occurred by the time t; Continuous parameter, 
discrete state; 

– Poisson process: a special counting process 
satisfying independent Increments & stationary 
increments properties

– Birth‐depth process: steady‐state solution 
(balance equations)


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Topics

• Markov processes

Chapter 4 in Allen’s book
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Markov Processes

A stochastic process is a Markov process

iff 

probabilities of future states depend only on 

the current state and not on how it reached 

that state 

i.e., all influences of the past on the system's 

future is contained in the current state.
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Formal Definition
A stochastic process {X(t), t  T} is a Markov 

process if for any set of n + 1 values t1 < t2 < . 

. . < tn < tn+1 in the index set T and any set of 

n+1 states { x1, x2, . . ., xn , xn+1}

P[ X (tn+1)=xn+1|X(t1)=x1,X(t2)=x2, . . X(tn)=xn] 

≡ P[ X(tn+1) = xn+1 |  X(tn) = xn]

Markov Process

Birth-Death Process

Poisson
Process

Note: All birth-and-death processes are 
Markov Processes. Hence, the Poisson 
process is a Markov Process
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Definitions

• Markov chains
• Discrete-time Markov chains
• Homogeneous Markov chains
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Markov Chains

• A discrete state Markov process is called a Markov 
chain.
• States can be labeled { E0, E1, E2,. . . }
• Typically the states are just denoted using non-
negative integers { 0, 1, 2, . . . }, where state i 
corresponds with Ei.

• A discrete time Markov chain makes state 
transitions at times tn,  n = 1, 2, 3, . . .  (possibly into 
the same state) 

Notation:  { X(tn),   n = 0, 1, 2, . . . }   { Xn }

One-step state transition probabilities:

P[Xn+1 = j  | Xn = i ],  n, i, j = 0, 1, 2, …
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Homogeneous Markov Chains

Markov chains for which  the one-step transition 
probabilities are independent of time index n,  i.e. , 

P[Xn+1 = j  | Xn = i ] = P[Xm+1 = j  | Xm = i ]

=  Pij  m, n , i, j

Such a MC is said to have stationary transition 
probabilities or to be homogeneous in time.
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State Transition Probability Matrix
(One-Step)
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• P is a n × n matrix if the number of states is finite (n)

Otherwise,

P is an infinite matrix.

• Requirements:
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Hands-On Problem
• Consider a discrete-time “Markov 

chain” expressed by the following 
state transition diagram

a) Set up the one-step state transition 
probability matrix P of the “Markov 
chain”.

b) Is this a valid Markov chain? If not, 
make the least changes without adding 
more transitions to make the Markov 
chain become valid.
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Discrete-Time MC: Example I

• Consider a sequence of Bernoulli trials, for 
each trial

– Success probability is p

– Failure probability is q = 1 – p

Assume Xn -- the state of the process at trial 
n, is the number of uninterrupted successes 
that have been completed at this point, i.e., 
the length of consecutive successes. 

Find the state transition probability matrix 
and state transition diagram.

    X
8   7  6  5  4  3   2  1   0      n   
F  S  S  S  F  F  S  S  F   :Trial

n 

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State Transition Probability Matrix
(n-Step)

• n-step transition probabilities

For homogeneous MC

And

• Denote the matrix of n-step transition probabilities by

Then 
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State Transition Probability Matrix
(n-Step) (Proof)
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-- Chapman-Kolmogorov equations

In particular, when m=1
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Markov Chains (Cont’d)

• Let j(n) represent the probability of being 
in state j at the nth step (transition), i.e. 

j(n)  =  P[Xn = j ]

• In vector notation:
(n) = (0(n), 1(n), . . . m-1(n))

One-step transition probability matrix:  

(n) =  (n-1) × P   
(n) = (0) Pn
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Discrete-Time MC: Example II

A communication system transmits the 
digit 0 and 1 through several stages. At each 
stage, there is a probability of 0.75 that the 
output will be the same digit as the input.

What is the probability that a 0 that is 
entered at the first stage is output as a 0 
from the 4th stage?
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Review Question

A communication system transmits the 
digit 0 and 1 through several stages. At each 
stage, there is a probability of 0.75 that the 
output will be the same digit as the input.

What is the probability that a 0 that is 
entered at the first stage is output as a 1 
from the 3rd stage?
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Irreducible Markov Chains

• State j of a Markov chain {Xn} is said to be 
reachable from state i if it is possible for the 
chain to proceed from state i to state j in a 
finite number of transitions, i.e. 

• Two states i and j are to communicate if i is 
reachable from j and j is reachable from i.

• If every state is reachable from every other 
state, the chain is said to be irreducible.

0 somefor     ,0)(  nP n
ij
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Examples
• Bernoulli trials example

• Communication system example

• Another example

Irreducible!

Irreducible!

Reducible!
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Irreducible Markov Chain?

• Can tell easily from the state transition 
diagram

• Given the probability transition matrix P, 
take n-th power of P, if for some n, a 
positive matrix (all items >0) is obtained, 
which means that a transition can be made 
between any two states in n steps 
Markov chain is irreducible.
– Example 4.4.4 in Allen
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Aperiodic Markov Chains 
• The period of state i, d(i),  is the greatest 

common divisor of the set of all positive 
integers n such that   
– If                        , define d(i) = 0

– If d(i) > 1, state i is said to be periodic

– If d(i) = 1, state i is said to be aperiodic 

• A state i for which Pii > 0 has period of 1

• A Markov chain is aperiodic  if every state 
has period 1 (is aperiodic)

0)( n
iiP

1,0)(  nP n
ii

Dr. Xing © Markov Processes 22

Examples
• Every state is aperiodic

• Every state is periodic with period 2





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0   1
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Recurrent Markov Chains

• For each state i, define        to be the probability that 
the first return to state i occurs, n steps (transitions) 
after leaving i, i.e., 

Define: 

Then, the probability of ever returning to state i is 
given by 

• If fi < 1, then state i is a transient state

• If fi = 1, then state i is a recurrent state
– Mean recurrence time of i, i.e., the average time 

(steps) to return to state i is 

– If            ,  state i is said to be recurrent null

– If             , state i is said to be positive recurrent or 
recurrent non-null.   
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Ergodic Markov Chains

• A discrete-time Markov chain is said to 

be ergodic if it is

– irreducible: you can get from every state to 

every other

– aperiodic: every state has period 1. For each 

state there are paths back to that state of 

various lengths, i.e., not all multiples of the 

same integer k>1.

– for which all states are positive recurrent: for 

each state, upon leaving the state you will 

return with probability 1 and within a finite 

mean time. 

A finite-state Markov chain that is 
irreducible and aperiodic is ergodic.  
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Probability Distribution of MC

• Let j(n) represent the probability that discrete time 
Markov chain {Xn} is in state j at the nth step 
(transition), i.e. j(n)  =  P[Xn = j ]

• Initial distribution of state j is j(0)  =  P[X0 = j ], 
j=0,1,…

• A discrete Markov chain is said to have a stationary 
probability distribution  =  ( 0, 1, 2, . . .) if

– j(0)  = j(n)  = j ,   j n

– Equivalently, the matrix equation  = *P is satisfied.
– Requirements

i  0   i and   i i =  1 

• A Markov chain is said to have a long-run or limiting 
probability distribution  =  ( 0, 1, 2, . . .) if 
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Properties of Ergodic MC

• The limiting probabilities 

always exist and are independent of the initial state 
distribution (0) =  ( 0(0), 1(0), 2(0), . . .). 

•  =  ( 0, 1, 2, . . .) forms a stationary probability 
distribution and j =  1 / mj.

• The limiting distribution is the unique solution to the 
equations 

 = *P   and  i i =  1

• Stationary probability distribution  = Long-run (limiting) 
probability distribution
Also called “equilibrium” or “steady-state” distribution.

,......1,0,)(lim 
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Discrete-Time MC: Example II (Revisit)

A communication system transmits the digit 
0 and 1 through several stages. At each stage, 
there is a probability of 0.75 that the output 
will be the same digit as the input.

What is the limiting probability that a 0 
entered into the first stage is output as a 0 
from the nth stage as n?
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Balance Equations of MC (1)

• Balance equations
Transition entering = Transition leaving

• Example
– 2-state communication system

Transition leaving = Transition entering

Equations Balance  P

0 *( 0.25+0.75) = 0 * 0.75+ 1 * 0.25

i.e.          0 * 0.25 = 1 * 0.25

Or                     0 =  1

This is the same as the one obtained from 
 = *P 
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Exercise

Write down the balance equations for the 
following MC:
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Hands-On Problem  
• Suppose that in New Zealand, home of the Gala

apple, years for these wonderful apples can be
described as Great, Average, or Poor. Suppose
that following a Great year the probabilities of
Great, Average, or Poor years are 0.5, 0.3, and
0.2, respectively. Suppose also that following an
Average year the probabilities of Great, Average,
or Poor years are 0.2, 0.5, and 0.3, respectively.
Finally, suppose that following a Poor year the
probabilities for Great, Average, or Poor years are
0.2, 0.2, and 0.6, respectively. Assume we can
describe the situation from year to year by a
Markov chain with the states 0, 1, and 2
corresponding to Great, Average, and Poor years,
respectively.
– Set up the transition probability matrix P of the 

Markov chain & draw the state transition 
diagram.

– Is the Markov chain ergodic? Why or why not?
– Suppose the initial probability for a Great year 

is 0.2, for an Average year is 0.5, and for a 
Poor year is 0.3. What is the probability of a 
Great year after one year? 

– What is the probability for a Great year after n
year as n infinity?
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Next Topics

Things to Do

• Read Allen’s Ch. 4

• Queueing systems


