ECE560: Computer Systems
Performance Evaluation

Lecture #11-
Queueing Systems (I)

Instructor: Dr. Liudong Xing

Administration Issues

» Homework #4 assigned
— Due: March 4, Monday

+ Annotated Bibliography
— Due: March 22, Friday

— Refer to Section 2.2 in the Project
Description for the guidelines

» Midterm Exam on March 6, Wednesday
— Review session on March 4, Monday
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2.2 Annotated Bibliography

* The annotated bibliography is a list of
papers that are relevant to your project. For
each paper, you must give the complete
citation, which includes .... In addition,
you must write a 30-70 word summary for
each paper describing its contents and how
it is relevant to your project. This summary
must not be a simple repetition of the
paper’s abstract. The goal of this annotated
bibliography is to show that you have
adequately researched the previous peer-
reviewed work that has been done in the
area of your proposed project.

Review of Lecture#10

* Discrete-time Markov chains
— One-step, n-step transition probabilities
(matrix); homogeneous
— TI(n) =T1(0) Pn
* Ergodic
— irreducible: you can get from every state to
every other

— aperiodic: every state has period 1. For each
state there are paths back to that state of
various lengths

— for which all states are positive recurrent:
for each state, upon leaving the state you
will return with probability 1 and within a
finite mean time.

— Stationary probability distribution =
Long-run (limiting) probability distribution

— II=I1*P and 2, II = 1

— Balance equations: Rate entering = Rate

_leaving

Dr. Xing 4
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Dr. Xing ©

Topics

Overview of queueing systems
Performance measures

D/D/1 queueing systems
M/M/1 queueing systems

Related reading:
Allen’s Ch. 5.0 ~5.2

Q-Systems(T)

Introduction to Queueing Systems

What is a queueing system?

service time distribution
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arrival queue server
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Inter-arrival fueE may scheduling
distribution have finite discipling
capacity

— Arrivals to an empty queue get immediate
service

- Arrivals to a busy system are held in the
queue until server is free

— Arrival rate is typically drawn from a r.v.
distribution, e.g. Poisson with a rate A

- Service rate is computed using the rate of
processing for the device and is in units per
time and is often denoted by p

Dr. Xing © Q-Systems(I) 6
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Applications of Queueing Systems

* Supermarket checkout line

* Bank teller line

* Batch jobs waiting on a CPU

¢ Traffic lights

¢ Operating systems task scheduling
* Planes to take off or land

* Interactive inquiry system

¢ Airline reservation system

Dr. Xing © Q-Systems(T)

Queueing Systems

e Performance evaluation with
queueing systems involve two
steps:

1. Modeling process
2. Mathematical solution of the model

Dr. Xing © Q-Systems(I) 8
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Kendall Notation

Standard notation for queueing systems:

A/B/c/K/m/Z
A: arrival process or inter-arrival time
distribution
— ‘M’ =Poisson arrival process
— ‘D’ = Deterministic (constant) arrival rate
— ‘G’ = General arrival process
B: service process or service time dist.
- ‘M’ = Exponential service time dist.
— ‘D’ = Deterministic (constant) service time
- ‘G’ = General service time

c: number of servers
K: the capacity of the system
(queuetserver(s)) (default: )

m: total job/customer population
(default: o)

Z: scheduling discipline (default: FIFO)

Dr. Xing © Q-Systems(T)

Examples

* D/D/1 queue:
— Single server FIFO queue
— No capacity/population restriction
— Constant inter-arrival time
— Constant service time
* M/M/1 queue:
— Single server FIFO queue
— No capacity/population restriction
— Poisson arrivals
— Exponential service time
e M/G/ « queue:
- Infinite server queue
— Poisson arrivals

— General service time
Why /IMII?

“M” means that the process has the “Markov

property”, i.e., the process is “memory-
less”.

Dr. Xing © Q-Systems(I)
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Notation

A: average arrival rate of new jobs
E[t]: average inter-arrival time (=1/A)
LL : average service rate

W.: average service time (=1/u)

W,: average time a job spends in the
queue (= average waiting time)

W: average time a job spends in the
system (= average system
time/response time/sojourn time)
L,: average number of jobs in the
queue (= average queue length)

L: average number of jobs in the
system

c: number of identical servers

More: see Table 5.1.1 on P252

Dr. Xing © Q-Systems(T) 11

Performance Measures of
Queueing Systems

Dr. Xing © Q-Systems(I)
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Performance Measures of
Queueing Systems (I)

* Average number of jobs/customers in
the system (L)

* Average time spent in the system (W:
average response time)

* Average number of jobs in the queue
(Ly)

* Average time spent in the queue (W
average waiting time)

Little’s Law/Formula/Theorem

L=2W
L=,

holding for all queueing systems

Dr. Xing © Q-Systems(I) 13

Little’s Law

L=W
L, =AW,

* Rigorous proof: Ref. [42] by Little, Ref.
[56] by Stidham

* Intuition;

Dr. Xing ©

Pick a “typical customer”

When the customer arrives to the queueing
system, the customer should find L customers
waiting

When the customer leaves the system, the
customer has been in the system for /¥ units of
time

Implying AW customers should have arrived
while the customer was in the system

In the steady state, the number of customer left
behind on departure should equal the number
found on arrival, i.e., AW = L.

Q-Systems(I) 14
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Performance Measures of
Queueing Systems (II)

* p,(t): probability that there are n
customers in the system at time ¢

* 71, steady-state probability that there
are n customers in the queueing
system

e Throughput (y): rate at which jobs
successfully depart from the system

* Blocking probability (Pp, for the finite
buffer/queue size): probability an
arriving job is turned away due to a

full buffer

Dr. Xing © Q-Systems(I) 15

Performance Measures of
Queueing Systems (I1I)

* Traffic intensity/offered load (a):

a=W,/E[r]

- W,: average service time per server

— E[t]: average inter-arrival time for all
customers/jobs entering the system and not
just for the customers serviced by a
particular server, unless there is only one
server

— A measure of the required number of
servers

e Server utilization (p): p = a/c

— Represents average fraction of the time that
each server is busy assuming traffic is
evenly distributed to each server

— Probability that a given server is busy as
observed by an outsider observer

— A measure of congestion

Dr. Xing © Q-Systems(I) 16
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An Example Important Queueing Systems

¢ Consider a D/D/1 queueing system with
— A constant inter-arrival time of 20 seconds

D/D/1 queues

— A constant service time of 10 second

M/M/1 queues

Then: the server is busy half of the time

e M/M/1/N queues | Birth-death
p=a=10/20=05 e M/M/c queues queueing
If the server is replaced by one with a constant o M/M/ systems
service time of 15 seconds, then it is busy o0 queues
three-fourth of the time e M/M/1/k/k queues ’

p=a=15/20=0.75

If the server is replaced by one with a constant M/G/1 queues
service time of 30 seconds, then the server Embedded
must provide 30 seconds of service every 20 M/D/1 queues

Markov chain

seconds, impossible! Two servers must be e GI/M/1 .
’ ueues
provided to keep up! M/ q queueing
* GI/M/c queues systems
p=a=30/20=1.5 / / q )
Dr. Xing © Q-Systems(I) 17 Dr. Xing © Q-Systems(I) 18




D/D/1 Queues

¢ A deterministic (non-random) queue
has
— Deterministic arrival rate A
¢ Constant inter-arrival time 1/ A
— Deterministic service rate pt
¢ Constant service time 1/ p
— 1serve
— Infinite length buffer
— oa=p =M
If arrival rate is less than service rate, then there
is no waiting in the queue

(p<1: probability of server being busy)

[f arrival rate is greater than service rate, the
queue will move towards having an infinite
waiting time

(p>1: infinite queue length - o)

(finite queue will be overflowed)

Dr. Xing © Q-Systems(I) 19

Agenda

Overview of queueing systems

Performance measures

D/D/1 queueing systems

M/M/1 queueing systems

— The most basic and important
queueing model!

Related reading:
Allen’s Ch. 5.0 ~5.2

Dr. Xing © Q-Systems(I)
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M/M/1 Queues
* An M/M/1 queue has

— Poisson arrivals with a rate A

— Exponential service times with a
mean of 1/, so p is the average
service rate

- 1 server
— An infinite length buffer/queue

system

arrivals Si_ngle server
with exponential
distribution

A
e Fits the birth-and-death process
— A birth is a customer arrival

— A death occurs when a customer
leaves the system after completing
service

i
|
. |
Poisson | queus server
|
|
|
|

Dr. Xing © Q-Systems(I) 21

M/M/1: Poisson Arrival Process

Let N(t) denote the number of arrivals in
interval (0,t). Then,

Pr[N(t) =n]= ﬂe‘”
n

Let t denote the time between two Poisson
arrivals. Then,

Prr<t]=1-e*

The rate A is the average number of arrivals
per unit of time, and 1/ A is the average inter-
arrival time
For 2 disjoint intervals (t1, t2) and (t3, t4). The
number of arrivals in (t1, t2) is independent of
the number of arrivals in (t3, t4) — independent
increments!
Examples:

— Customers arriving to a bank

— Packets arriving to a buffer

— Transactions arriving at a server

— Read/write requests to a disk controller

Dr. Xing © Q-Systems(I) 22
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M/M/1: Exponential Service Time
Distribution

¢ Let X denote the service time of a job.
If X is exponentially distributed with
average service time 1/u. Then,

— In a small time interval At, the probability
that a service completion will occur is
proportional to the size of the interval:

Pr[1 completion in At] = pAt + o(At)

— In At, the probability of more than 1 service
completion is negligible:

Pr[> 1 completion in At] = o(At)

— Service completions are independent of
other service completions and also
independent of the service completion time
since the last service completion
(independent/stationary increments)

P X <t]=1-e*

Dr. Xing © Q-Systems(I) 23

Performance Evaluation of
Queueing Systems

Dr. Xing © Q-Systems(I)

24
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Performance Measures of Interest

Traffic intensity (o)
» Server utilization (p)

» 7, steady-state probability that there are n
customers in the queueing system

* Throughput (y): rate at which jobs
successfully depart from the system

» Average number of jobs in the system (L)
* Average time in the system (W)
* Average number of jobs in the queue (L)

* Average time in the queue (W)

Dr. Xing © Q-Systems(I) 25

Performance Measures of M/M/1

* Traffic intensity/offered load (a):

a =W, /E[r]
=1/ @)1/ 2) = Al u

e Server utilization (p):

p=a/c=a=\Nu

Dr. Xing © Q-Systems(I)

26
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Performance Measures of M/M/1
(Cont’d)

1
: system |
1
Poisson |  dueue server |
arrivals : | Single server
—- :D]] L with exponential
)u | C | distribution
|
1

* p,(t) =probability that the system has n
customers at time t

* m, :=steady state probability that there are n
customers in the system

* By similar reasoning for birth-and-death
process, the differential-difference equation
which describe the state of the queue as a
function of time:

Lp ) ==+ 0+ 3, (1) (1)

L po(6) = =Apy (04 ap, (1)

* If we are interested in the steady state
behavior, we set

ipn (#)=0 and limp,(*)=7, Vn
dt t—w
Then, the steady-state equations:

0 = _(/1 + /u)ﬂ-n + /’Lﬂ-n—l + /uﬂ'-nH

0=—Anm,+ ur,
Dr. Xing © Q-Systems(I)

27

Derivation of M/M/1 Queue (II)

e A different way to obtain steady-state
probabilities is to look at the state-transition
diagram

i g A A
Z i H #

* In a steady state, the average rate at which the
system enters a state must be equal to the
average rate at which it leaves the state

® Then, we obtain Balance Equations:

State Rate out=Rate in
0 Ay = um,
1 (A+p)my = Amy + urm,
2 (A+p)my = Am + pr,
n (A+wr, =7, + uz,,,
Dr. Xing © Q-Systems(I) 28
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M/M/1: Solution to Steady-State
Probabilities

* By adding each two consecutive equations:

» All probabilities have to sum up to one:
Z w, =1
n=0

e Therefore:

7[02[1} ==, :%:l—i
=\ M i( 2 J H
n=0 \ H
Dr. Xing © Q-Systems(I) 29

Performance Measures of
the M/M/1 Queues (Cont’d)

e Server utilization (p): p = at/c =M/

e Steady-state probability that the system has n
customers (71,):

7Z'0=1—i=1—p,
U

i n . .
”n:(;J Ty=p'my=p"(1-p)

It is a Geometric distribution!

Dr. Xing © Q-Systems(I) 30

ECE560

15



Review (L#6)

e Geometricr.v.:is a r.v. that

counts the number of
independent Bernoulli trials until
the first success is encountered.

P{X=0}=p
P{X =1} =qp
P{X=2}=q"p

In general, for k=0,1,2,...
P{X=k}=q"p

Dr. Xing © Q-Systems(I) 31

Performance Measures of Interest

v’ Traffic intensity (o)
a=p=A1/u

v’ Server utilization (p)

v 1,: steady-state probability that there are n
customers in the queueing system

A
o :l__zl_pn
U

(2o e
Y7,

» Throughput (y): rate at which jobs
successfully depart from the system

» Average number of jobs in the system (L)
* Average time in the system (W)
* Average number of jobs in the queue (L)

* Average time in the queue (W)

Dr. Xing © Q-Systems(I) 32
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Performance Measures of
the M/M/1 Queues (Cont’'d)

* Throughput y = rate at which jobs
depart from the system

y = uP[> 0jobs in the system]
= u(1-P[0jobs in the system])
=u(l-7y)=pd-(~1-p))
=up =4

Dr. Xing © Q-Systems(I)

33

Performance Measures of
the M/M/1 Queues (Cont’d)

¢ Average number of jobs in the system

(L):
L =§:nﬂn =(1—p)inp”

o o (I=p)p P
=(1- = =
( p)p;1 np Ay " 1op

* Average time in the system (W):
With Little’s Law:

Weljig=P =1 _
1-p u—A

Dr. Xing © Q-Systems(I) 34
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Performance Measures of
the M/M/1 Queues (Cont’d)

¢ Average number of jobs in the queue
(Ly:

L,=L—(1*P[Server is not empty ]
=L —(1-P[0jobs in the system])
=L-(-7)=L-(1-(1-p))

P _ P

:L— = —_ =
P - p P - p

* Average time in the queue (W):

With Little’s Law:

2
W:L/g:p_l
q q l_pﬂ
or
1 S|
W,=W-Ww,=—L —— - L _
(1-pA4 u 1-p 2

Dr. Xing © Q-Systems(I)

35

Summary (M/M/1)

* Performance measures:

¥y = pP[> 0jobs in the system]
= u(1- P[0jobs in the system])
=u(-m)=p(l-(U-p))=up =4

L=Ynx,=(1-p)) np"
n=0 n=0

_d=pp __p

(1-p)? 1-p
wer/i=L 1=t
1-p u—A
L, = L—(1* P[Server is not empty]
=L —(1- P[Ojobs in the system])

=L-(1-z)=L-(1~(1-p)

=(1-ppy np""
n=1

2
P P
:L—pzi—pzi
1-p 1-p
2
Wo=1,/a=L"L ocw —w-w =2
l1-p 4 K (1-p)4
Dr. Xing © Q-Systems(I)
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Example: Applying the M/M/1 Results
to a Single Network Link

Poisson queue  transmitter ! e
0580 - Transmission line

arivals | B 1
A B

» Poisson packet arrivals with rate A = 2000
packets/sec
* Link capacity C=1.545 MB/sec

» Approximate the packet length distribution
by an exponential with mean L=515 B

» What is the mean service time W? The
transmitter utilization p? Average number
of packets in the system L? Average time
spent in the system W?

Dr. Xing © Q-Systems(I) 37

A Characteristic of M/M/1 System

 Calculate W/W_:

78 average service time

_pli-p)/a_ 1
1/ p 1-p

W _ average time to complete service

* Graph of W/W, versus p:
— Figure 5.2.2 in Textbook

10
9
8
7
6
5
4
3
2
1
0

00 01 02 03 04 05 06 07 08 09 10

Fi w .
Dr. Xing ° igure 5.2.2, W versus p for M/M/1 queveing system. 38
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A Characteristic of M/M/1 System
(Cont’d)

* W/W, is a measure of response time
— the smaller W/W , the better response
time

* The response time is very sensitive
to minor changes as server
utilization p = 1

» High utilization and good response
time are incompatible goals

+ A stretch factor of 5 is often
considered the limit of acceptable
performance

K<5:>L<5:>p<0.8

/4 l-p

N

Dr. Xing © Q-Systems(I) 39

Example

» Have one fast computer

Poisson Queue Fast CPU

* Proposal: divide workload among N
slower machines:

queue  Slower CPU

At T
— [[[] t>—
Jobs are / i queue  Slower CPU
divided Ao
among T ._’ 2
N systems

queue  Slower CPU

4 4
Ap = TR
O Hiioe N
Dr. Xing © Q-Systems(I) 40
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Q1: Is the proposed system an
improvement? Why or why
not?

Dr. Xing © Q-Systems(I) 41

Solution to Q1

* For N-Slower Machine System:

W (slow) = ! :L=E=NWS(fast)
ll’lslow ’L/ /’l
N
w_ 1wV
W, l1-p 1-p
W (slowy =—IoW)_ NTE vy fas)

1 — ﬂ’sh% B 1 — /1
luslow H

Average response time will INCREASE
N fold, even though the N-Slower CPUs
together process the same number of jobs

per unit of time as before.

Dr. Xing © Q-Systems(I) 42
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Q2: How fast would the
slower machine need to be in
order to give customers the

SAME average response time
W?

Dr. Xing © Q-Systems(I) 43

Solution to Q2

1/
W (SIOW ) — Ws (SIOW ) _ fus/aw

A stow - 1- 4
b= H slow /Vﬂ slow
W . ( fast ) 1/ u

W ( fast ) = = =
1- V 1- y
u u
For equal response time
W (slow ) =W ( fast )

l/luslaw _ 1/ﬂ

1- 4 _l_ﬂ
/V'uslow //u

1- 4
H siow — M

H 1-4
Nﬂslow

(- 4 = u(l-4
H o ( /vﬂm) e ( /ﬂ)
H siow _%\]:ﬂ_ﬁ'

Hap =#~2Q-1/N)
”slow/:l—’l—(l—l/zv)
“ u

Dr. Xing © Q-Systems(I)
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Hands-On Problem

» Assume current system has a
utilization of p=0.8 and it is to be
replaced with N=10 slower
processors. How fast would the
slower processors need to be in order
to give the SAME average response
time W as the original system? How
about when p=0.5?

Dr. Xing © Q-Systems(I) 45

Q3: Is there any other
multiprocessor architecture
that 1s superior?

Dr. Xing © Q-Systems(I)

46
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* YES, as we will see later (M/M/c)

Dr. Xing ©

Solution to Q3

Q-Systems(I)

47

Next Topics

Birth-and-death queueing systems
(Cont'd)

e M/M/1/N, M/M/c, M/M/w, M/M/1/k/k
Queues

Things to Do

Read Allen’s Ch. 5.0 ~ 5.2
Prepare for midterm exam

Annotated Bibliography (refer to
Section 2.3 in project description)

¢ due March 22 (Friday)

Dr. Xing © Q-Systems(I)
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