UNIVERSITY OF MASSACHUSETTS DARTMOUTH

ECE 560 Computer SystemsPerformance Evaluation

Lecture #12 - Midterm Review

Instructor: Liudong Xing Spring 2024

Administration Issues

- Homework#4 due <u>Today</u>
- Midterm Exam
 - On March 6, Wednesday
 - Review session today
- Project Annotated Bibliography
 - Refer to Project Description Section 2.2
 - Due: March 22, Friday

No Classes Next Week (Week of March 11); Have a Great and Safe Spring Break!!

Midterm Exam

- 12:30pm-1:55pm, Wednesday, March 6
- Form:
 - Open book, open notes, in-class exam
 - Calculators are allowed
- Preparation:
 - Lecture notes #2, 3, 5-7, 9, 10
 - Hands-on problems
 - Homework #1 #4

Midterm Review

- I. Overview of Computer Systems Performance Evaluation (CSPE)
- II. Measurement Technique and Tool
- III. Experimental design and analysis
- IV. Simulation modeling techniques
- V. Analytical modeling techniques
 - 1. Probability theory and statistics
 - 2. Stochastic processes
 - 3. Queueing systems (M/M/1)

Dr. Xing Midterm Review

Part I: CSPE Overview

- Why PE?
 - To make sure the system can perform the intended function correctly, efficiently, and in a cost-effective manner.
- What to measure?
 - 5 classes of PE measures/metrics
 - · Responsiveness, Usage level, Productivity, Mission-ability, Dependability
 - Relevance of measures to various application domains
 - General purpose computing, High availability, Real-time control, Mission oriented, Long-life
- How to do it?
 - 3 PE techniques (measurement, analytical modeling, & simulation)
 - criteria for selecting an appropriate one
 - Life-cycle stage, Time required, Tools, Accuracy, Trade-off analysis, Cost, Salability
 - A 10-step systematic approach to PE
 - A complete project often consists of several cycles through all those steps

Part II: Measurement Technique & Tool

- 3 key issues related to performance measurements
 - 5 types of workloads that have been commonly used to compare CS
 - Addition instruction, Instruction mixes, Kernels, Synthetic programs, Application benchmarks
 - Performance monitors: tools used to observe activities on a system
 - Observe system performance, collect performance statistics, analyze data, display results
 - Concerning mechanisms that triggers the monitor into action
 - Event-driven, timer-driven (sampling)
 - · Concerning the result displaying ability
 - On-line, batch
 - · Concerning the level at which a monitor is implemented
 - Hardware, Software, Hybrid
 - Summarizing measured data
 - By a single number: mean, median, mode, geometric & harmonic mean
 - Variability: range, variance, COV, percentiles, SIQR, mean absolute deviation

Dr. Xing Midterm Review

Part III: Experimental Design and Analysis

- Frequently-used terms in experimental designs
 - Response variables, factors (predictors, predictor variables), levels (treatments), primary factors, secondary factors, replication, designs, experimental units, interactions
- Types of experimental designs
 - Simple designs, full factorial designs, fractional factorial designs
- A closer look at 2^k factorial designs
 - Regression equations and sign table methods to quantify the effects of the factors and interactions on the system performance

$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$$

I	A	В	AB	у
1	-1	-1	1	15
1	1	-1	-1	45
1	-1	1	-1	25
1	1	1	1	75
160	80	40	20	Total
40	20	10	5	Total/4

Dr. Xing

Midterm Review

Part IV: Simulation Modeling

- Applications of computer simulations
- Basic concepts / definitions
 - System, model & model building, simulation, system state description, event, simulation time, run time
- Classifying simulations

• Suggested 10-step simulation process

Dr. Xing Midterm Review 9

Midterm Review

- I. Overview of Computer Systems Performance Evaluation (CSPE)
- II. Measurement Technique and Tool
- III. Experimental design and analysis
- IV. Simulation modeling techniques
- V. Analytical modeling techniques
 - 1. Probability theory and statistics
 - 2. Stochastic processes
 - 3. Queueing systems (M/M/1)

Probability Theory

- Sample spaces & events
- Field, σ -field, and probability measure
- Odds for/against an event
- Conditional probability, Total Probability Theorem, and Bayes' Formula
- Independence: mutually vs. pairwise

Dr. Xing Midterm Review 11

Random Variables (r.v.)

- Basic concepts: not random or variable, but a real-valued function: X: Ω → R
- Cumulative distribution function (c.d.f.) of a r.v.: F(x)
- Discrete r.v.
 - Probability mass function (p.m.f.)
 - Important discrete r.v.s: Bernoulli, Binomial, Geometric, Poisson
- Continuous r.v.
 - Probability density function (p.d.f.)
 - Important continuous *r.v.*s: Uniform, Normal, Exponential

Random Variables (r.v.) (Cont'd)

- Important parameters of r.v.s
 - Mean (expected value) and the *k*-th moment
 - Variance/standard deviation
 - Squared coefficient of variation (C.O.V.) and C.O.V.
- Jointly distributed *r.v.*
 - Joint/marginal distribution function
 - joint/marginal/conditional p.m.f for discrete r.v.s
 - joint/marginal/conditional p.d.f. for continuous r.v.s
 - Independency, Expectation, Covariance, Correlation, Variance
 - Min and Max Theorems and their application

Dr. Xing Midterm Review 13

Stochastic Processes

- Basic concepts of stochastic processes
 - Definition: a family of random variables
 - Classification
 - Discrete parameter, continuous state
 - Discrete parameter, discrete state
 - · Continuous parameter, continuous state
 - · Continuous parameter, discrete state
 - Realization/sample path

Stochastic Processes (Cont'd)

- Counting processes
 - Continuous-parameter discrete-state processes
- Poisson processes
 - o(h) notation
 - Definition
 - A Poisson process is a counting process satisfying independent/stationary increments and conditions on P[N(h)]
 - Number of arrivals (events) having Poisson distribution is equivalent to the inter-arrival time having exponential distribution
 - Properties
 - Superposition of independent Poisson processes
 - Decomposition of a Poisson process

Dr. Xing Midterm Review 15

Stochastic Processes (Cont'd)

- Birth-and-Death Processes
 - Definition & State-transition diagram
 - Differential-difference equations for $P[X(t)=n]=P_n(t)$
 - Special case: pure-birth processes
 - A Poisson process is a pure-birth process with a constant birth rate
 - Steady-state solutions to general birth-and-death processes
 - Based on $\lim_{t \to \infty} \frac{dP_n(t)}{dt} = 0, \quad \lim_{t \to \infty} P_n(t) = P_n, \quad \forall n = 0,1,2,...$
 - Balance equations: rates in = rates out

Stochastic Processes (Cont'd)

- Markov chains (discrete-state Markov processes)
 - Discrete-time Markov chains
 - One-step, *n*-step transition probabilities (matrix); homogeneous
 - Ergodic $\Pi(n) = \Pi(0) P^n$
 - irreducible: you can get from every state to every other
 - <u>aperiodic</u>: every state has period 1. For each state there are paths back to that state of various lengths
 - for which all states are positive recurrent: for each state, upon leaving the state you will return with probability 1 and within a finite mean time.
 - Stationary probability distribution = Long-run (limiting) probability distribution

$$\Pi = \Pi * P$$
 and $\sum_i \Pi_i = 1$
Balance equations: Rate entering = Rate leaving

Dr. Xing Midterm Review 1

Midterm Review

- I. Overview of Computer Systems Performance Evaluation (CSPE)
- II. Measurement Technique and Tool
- III. Experimental design and analysis
- IV. Simulation modeling techniques
- V. Analytical modeling techniques
 - 1. Probability theory and statistics
 - 2. Stochastic processes
 - 3. Queueing systems (M/M/1; Lecture#11)

Queueing Systems

• Fundamental elements

• Kendall notation: A/B/c/K/m/Z

Dr. Xing Midterm Review

19

Queueing Systems – Performance Measures

- Average number of jobs in the system (L) $L = \lambda W$
- Average time spent in the system (W: average response time) $L_a = \lambda W_a$
- Average number of jobs in the queue (L_q)
- Average time spent in the queue $(W_q: average waiting time)$
- $p_n(t)$: probability that there are n customers in the system at time t
- π_n : steady-state probability that there are n customers in the system

Performance Measures (Cont'd)

- Throughput (γ): rate at which jobs successfully depart from the system
- Blocking probability (P_B, for the finite buffer/queue size): probability an arriving job is turned away due to a full buffer
- Traffic intensity/offered load $\alpha = W_s / E[\tau] = \lambda / \mu$
- Server utilization $\rho = \alpha/c$

For stable operation: $\rho < 1$, $\alpha < c$

Dr. Xing Midterm Review 21

Birth-and-Death Queueing Systems

- M/M queues fitting the birth-and-death process
 - A customer arrival is a birth; a customer departure after completing service is a death
 - Both arrival process and service times are memoryless!
- Solution: *balance* equations
- M/M/1 performance evaluation

Midterm Exam

- 12:30pm-1:55pm, Wednesday, March 6
- Form:
 - Open book, open notes, in-class exam
 - Calculators are allowed
- Preparation:
 - Lecture notes #2, 3, 5-7, 9, 10
 - Hands-on problems
 - Homework #1 #4

Good Luck!!!