ECE560: Computer Systems Performance Evaluation

Lecture #5 –
Probability Theory & Statistics
(Part I: Review)

Instructor: Dr. Liudong Xing Spring 2024

Administration Issues (2/5)

- Homework #1
 - Due: **Today**
- Homework #2
 - Please download problems from course website
 - Due: February 12, Monday
- Project proposal (refer to Guidelines)
 - Due: February 23, Friday

Topics (Probability Theory)

- A basic tool for modeling random / uncertain phenomena
 - Sample spaces & events
 - Axioms of probability
 - Field, σ -field, and probability measure
 - Odd
 - Conditional probability & law of total probability
 - Independence

Related reading: Allen's Ch. 2.0~2.4

Random Experiment &

- Outcome is *unknown* in advance
- Set of all possible individual outcomes is *known*
- Example: tossing a die

Dr. Xing© Probability

Sample Space Ω

- The set of all possible individual outcomes (sample points / elementary events) of an experiment
- Example: sample space for "tossing a die"?

$$\Omega = \{1,2,3,4,5,6\}$$

• Exercise: sample space for "tossing a fair coin again and again until the first head appears"?

Sample Space Ω (*Types*)

- Finite vs. infinite
- Discrete vs. continuous
 - Discrete: sample points can be put into 1-to-1 correspondence with positive integers
 - Tossing a die
 - Tossing a fair coin again and again until the first head appears
 - Continuous: sample points consist of all numbers on some finite or infinite interval of real line
 - The computer's response time to an inquiry

Dr. Xing© Probability

Events *E*

- A subset of a sample space
- Example:
 - E1={outcome is prime}={2, 3, 5}: the event of rolling a prime number
- E may be Ω or \emptyset (impossible event)
- We say an event E occurs if the random experiment is performed and the observed outcome ω is in E, i.e., $\omega \in E$.

Basic operations on events (sets)

For any two events A, B, the following are also events

- $-\bar{A}$ or $A^c = \{All \text{ outcomes not in } A\}$
- A ∪ B = { All outcomes in A or B or in both}
- $-A \cap B = AB = \{All \text{ outcomes in both } A \text{ and } B\}$
 - If $AB = \emptyset$ then A and B are mutually exclusive (disjoint)
- Important properties:
 - $(A \cup B)^c = A^c \cap B^c$, $(A \cap B)^c = A^c \cup B^c$
- $-A-B = \{all outcomes in A but not in B\}$
- $-A \subset B$: if A occurs, so does B (A implies B)

Dr. Xing© Probability

"Axioms of Probability"

• For each event E of sample space Ω , if a number P(E) is defined and satisfies the following axioms

 $\mathbf{A1:} \qquad 0 \le P(E) \le 1$

A2: $P(\Omega) = 1$

A3: for any sequence of **pair-wise-mutually-exclusive** events, E_1, E_2, \ldots (i.e. $E_i E_j = \emptyset$ for any $i \neq j$), we have

$$P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$$

-- Infinite Additivity

P(E) is refer to as the **probability** of the event E

Field

- F is a collection of subsets/events of Ω
 - 1: F is non-empty
 - 2: If $A \in F \rightarrow \bar{A} \in F$
 - 3: If $A, B \in F \rightarrow A \cup B \in F$
 - 3': If $\{A_i\}_{i=1}^n$, where *n* is finite, $A_i \in F \rightarrow \bigcup_{i=1}^n A_i \in F$

F is called a **field** of subsets of Ω

- Properties
 - If $A, B \in F \rightarrow A \cap B \in F$
 - $-\Omega,\varnothing\in F$
 - If A, B \in F \rightarrow B A = B \cap $\bar{A} \in$ F

Dr. Xing© Probability 11

σ-Field

A σ-field (σ-algebra) F is a field with property 3` replaced by the stronger property

3'*: If $\{A_i\}_{i=1}^{\infty}$, where $A_i \in F, \forall i = 1, 2, \dots$ (countably infinite) \rightarrow

$$\bigcup_{i=1}^{\infty} A_i \in F$$

F is closed under countable union

- If F is a σ -field , then it is also <u>closed under countable</u> <u>intersection</u>
- Definition: if F is a σ -field on Ω , then (Ω, F) is called a **Measurable Space**

Probability Measure

- A **probability measure** P(.) on a σ -field F, which itself is on Ω , is nothing but a mapping/function from F \rightarrow [0, 1], such that the "axioms of probability" hold.
- Other properties (Th. 2.2.1)
 - $-P(\varnothing)=0$
 - $P(\bar{A}) = 1 P(A)$
 - $-P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - $-A \subseteq B \rightarrow P(A) \leq P(B)$
- Given a measurable space (Ω, F) and a probability measure P(.) on (Ω, F) , then the triple (Ω, F, P) is called a **probability space**.

Dr. Xing© Probability 13

Agenda

- Probability
 - $\sqrt{\text{Sample spaces \& events}}$
 - $\sqrt{\text{Axioms of probability}}$
 - $\sqrt{\text{Field}}$, σ -field, and probability measure
 - Odd
 - Conditional probability & law of total probability
 - IndependenceRelated reading: Allen's Ch. 2.0 ~ 2.4

Odds

• If an event A has probability P(A) of occurring, the odds for A are defined by the following ratio:

Odds for A =
$$\frac{P(A)}{1 - P(A)}$$

• The odds against A:

Odds against
$$A = \frac{1 - P(A)}{P(A)}$$

• If odds for A are a:b, then

$$P(A) = \frac{a}{a+b}$$

Dr. Xing©

Probability

15

Hands-On Problem

- Suppose a bookmaker tells you the odd against "A beating B" is 3:2. Assuming the odds are correct and you are one of the bettors.
- Which one you would like to bet your money on: A or B?

Dr. Xing©

Probability

16

Agenda

- Probability
 - √ Sample spaces & events
 - √ Axioms of probability
 - $\sqrt{\text{Field}}$, σ -field, and probability measure
 - √ Odds
 - Conditional probability & law of total probability
 - Independence

Related reading: Allen's Ch. 2.0 ~ 2.4

Dr. Xing© Probability 17

Conditional Probability

- <u>Definition</u>: Let A and B be two events, then the **conditional probability** of A given B: P[A | B] is a number such that
 - 1. $0 \le P[A \mid B] \le 1$,
 - 2. $P [A \cap B] = P [B] P [A \mid B]$

Note:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \text{ if } P(B) \neq 0$$

Hands-On Problem

• "Tossing a die": find the conditional probability of the event of the uppermost side showing 3 spots given the event of rolling an odd number occurring?

Dr. Xing© Probability 19

Law of Total Probability

• For any two events $A, B \in F$,

$$P(A) = P(A \mid B)P(B) + P(A \mid \overline{B})P(\overline{B})$$

• Let $\{B_i\}_{i=1}^n$ be a *partition* of Ω , then

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i)$$

Bayes' Theorem

- Based on Total Probability Theorem, we have "Bayes' Theorem / Rule / Formula"
 - Let $\{B_i\}_{i=1}^n$ be a *partition* of Ω , then for any event A with P(A)>0, we have

$$P(B_i \mid A) = \frac{P(A \mid B_i)P(B_i)}{P(A)} = \frac{P(A \mid B_i)P(B_i)}{\sum_{j=1}^{n} P(A \mid B_i)P(B_i)}$$

Dr. Xing© Probability 21

Hands-On Problem

- A color-blind person is chosen at random. Suppose that 6 percent of men and 0.3 percent of women are color-blind. And assume that there are an equal number of males and females.
 - a. What is the probability that a randomly chosen person is color-blind?
 - b. Suppose a person selected at random is found to be color-blind. What is the probability of this (color-blind) person being female?

Agenda

- Probability
 - √ Sample spaces & events
 - √ Axioms of probability
 - $\sqrt{\text{Field}}$, σ -field, and probability measure
 - √ Odd
 - √ Conditional probability & law of total probability
 - Independence

Related reading: Allen's Ch. 2.0 ~ 2.4

Dr. Xing© Probability 23

Independence of Two Events

• **Definition**: Events A and B are said to be independent $(A \coprod B)$ if

$$P(A \cap B) = P(A) \bullet P(B)$$

- Neither event influences the occurrence of the other: $P(A \mid B) = P(A)$, $P(B \mid A) = P(B)$
- Independence does NOT mean that A and B have nothing in common!
- Being independent \Leftrightarrow being mutually exclusive

Independence of Two Events (Cont'd)

- M.E. events are independent only when at least one of them has ZERO probability!
- The independent relation is not transitive!
- If $A \coprod B$, then so are

$$\overline{A} \coprod B$$
, $A \coprod \overline{B}$, $\overline{A} \coprod \overline{B}$

Dr. Xing© Probability 25

Independence of a Set of Events

A list of n events A_1 , A_2 , ..., A_n is defined to be

- pair-wise independent: if every pair is independent
- mutually independent: if for each set of k ($2 \le k \le n$) distinct indices i1,i2,...,ik, which are elements of $\{1,2,...,n\}$, we have

$$P(A_{i1} \cap A_{i2} \cap ... \cap A_{ik}) = P(A_{i1})P(A_{i2})...P(A_{ik})$$

Independence of a set of events (Cont'd)

- Mutually independent <> pair-wise independent
- A set of events is pair-wise independent. It does not follow that the list of events is mutually independent!

Dr. Xing© Probability 27

Hands-on Problem

- "tossing a fair coin three time"
 - Define the events A, B, C so that
 - A="first toss results in a tail"
 - B="second toss results in a head"
 - C=" third toss results in a tail"
- Questions: are the three events A, B, and C mutually independent? Pair-wise independent?

Next Topics

- Random Variable (r.v.)
 - Basic concepts
 - Discrete r.v.s
 - Continuous *r.v.s*
 - Jointly distributed *r.v.s*

Things to Do

- Homework
- Project proposal due February 23, Friday