ECE560: Computer Systems Performance
Evaluation

Lecture #6 —
Probability Theory (Part II Review)
- Random Variables

Instructor: Dr. Liudong Xing
Spring 2024

Administration Issues (2/7)

* Homework #2
— Please download problems from course website
— Due: February 12, Monday

* Project proposal (refer to Guidelines)
— Due: February 23, Friday
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Review of Lecture#5

* Probability theory: a basic tool for modeling random
/ uncertain phenomena

— Sample spaces & events

Axioms of probability

Field, o-field, and probability measure
— Odds for and odds against

Conditional probability & law of total probability

— Pair-wise vs mutually independence

Related reading: Allen’s Ch. 2.0~2.4

Dr. Xing© Probability

Topics

e Random Variable (r.v.)

— Basic concepts

— Discrete r.v.s

— Continuous r.v.s

Related reading: Allen’s Ch. 2.5~2.6, 3.0~3.2

Dr. Xing© RandomVariable
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Random Variable

* Informally, a random variable (r.v.) X is a real-
valued function from some sample space (2 to
R ie, X:Q >R

* A r.v. X maps each outcome w in (2 to a real
number X(w) € R

* r.v.is not random or variable, but a function
* The mapping is not random but deterministic

Dr. Xing© RandomVariable 5

Random Variable Example

* “tossing a fair coin three times”
- Q={TTT; TTH; THT, THH; HTT, HTH; HHT; HHH}
— Let X be the number of heads tossed in 3 times

— We can map each outcome in (2 to a real number.
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Distribution Function

¢ Definition: The cumulative distribution function (c.d.f.) or
more simply the distribution function F of a r.v. X is
defined for each real number x, by

F(x)=Pl{w:weQ AND X(w)<x}]
= P{X <x}

* Property:
— Fis anon-decreasing function
If x <y then F(x) <= F(y)
- Forallx<y, Pfx<X<y/=F(y)-F(x)
- Also, lim_, F(x)=1  lim__ F(x)=0

X—00 X—>—00
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Discrete vs. Continuous Random Variable
¢ A r.v. that can take on (at most) a countable number of
possible values is said to be a discrete r.v.

Example: tossing coin example

¢ Ar.v. that can take on a range of real values (uncountable!)
is said to be a continuous r.v.

Example: the time of arrival of a packet to a switch

— In general, the time when a particular event occurs

Dr. Xing© RandomVariable 8
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Discrete vs. Continuous Random Variable
(Agenda)
v" Definitions

e Characteristic functions

— Probability mass function (p.m.f.) for discrete r.v.

— Probability density function (p.d.f.) for continuous r.v.
¢ Important parameters of r.v.s

— Expectation/Mean: E[X], the kth moment

— Variance/standard deviation

— Squared coefficient of variation (C.O.V.) and C.O.V.
¢ Important example r.v.s

— Discrete: Bernoulli, Binomial, Geometric, Poisson

— Continuous: Uniform, Normal, Exponential

Dr. Xing© RandomVariable 9

Discrete Random Variable (1)

* Probability mass function (p.m.f.)

The p.m.f. denoted by Py(x) for a discrete r.v. X is
defined by Py (x)=PIX = x}
=Pl{w:0eQ | X(w)=x}]
— Py(x) is the probability that the r.v. X takes on a value of x
- O<=pylx)<=1

— Since r.v. assigns some real value x € R to each sample point
w e O, we must have

pr(x)=1 oK ZPX(xi)zl

xeR x; T
where T = {x;, x,, ...} is the image of X

Dr. Xing© RandomVariable 10
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Discrete Random Variable (2)

* Expectation/Mean/Expected value of X

Let X be a discrete r.v. with p.m.f. py(x), the mean of X,
denoted by p=E[X], is defined by

u=E[X]= Z(xi.Px(xi))

e Expectation of a function of ar.v. X

If X is a discrete r.v. that takes on one of the values x; €T
with respective probability py(x;), then for any real-valued

function g:
E[g(X)]= D (8(x,)® px(x,))
x;eT
Dr. Xing© RandomVariable 11

Discrete Random Variable (3)

e The kth moment of X
The kth moment of X is defined by E[X¥], {k=1,

2,3,...1
E[X*]= 3 (x; e px(x))
x;eT
Dr. Xing© RandomVariable 12




Discrete Random Variable (4)

e Variance of X

If X is a r.v. with mean p, then the variance of X, denoted
by Var(X)=0? is defined by Var(X)= E[(X-u)?]

— If X is a discrete r.v., then

Var[X]=E[(X - p)*]= Z[(x,. — 1)’ o py(x))]
— An alternative formula:

Var[X]=E[X*]-(E[X])’ = E[X]- p*

Dr. Xing© RandomVariable 13

Discrete Random Variable (5)

e Standard deviation of X

The squared root of the variance Var(X) is called the
standard deviation of X:

o=8D(X)=Var [X]

¢ Squared coefficient of variation (C.O.V)

_Var{X]_o’
EIXT 4

Cx

e (Coefficient of variation (C.0.V)

coy = [FrlX] _o
E[X] n
Dr. Xing© RandomVariable 14
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Discrete Random Variable (6)

e Hands-on problem:

“tossing a fair coin 3 times”

Let r.v. X be the number of heads tossed in 3
times
— Define the p.m.f.? c.d.f.?

— Find the mean, and the variance of X?

Dr. Xing© RandomVariable

Discrete Random Variable (Agenda)

v' Definitions

v A r.v. that can take on (at most) a countable number of
possible values is said to be a discrete r.v.

v" Characteristic functions

v Probability mass function (p.m.£.) for discrete r.v.
v' Important parameters of r.v.s

v" Expectation/Mean: E[X], the kth moment

v’ Variance/standard deviation
v" Squared coefficient of variation (C.O.V.) and C.O.V.

e Important example r.v.s

— Discrete: Bernoulli, Binomial, Geometric, Poisson

Dr. Xing© RandomVariable
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Example Discrete r.v.s (1)

* Bernoulli r.v.: has a 0 and 1 as its only possible values

— Originates from the Bernoulli trial, which is a random
experiment in which there are only 2 possible outcomes:
success (1) or failure (0), with respective probability p and g,
where p+g=1.

- Dmf pix=y=p,=p=p
P{X=0}=py(0)=p,=q=1-p

- Cd.f 0 £ <0
F(x)=1<q 0<x<l1
p+qg=1 x>1
- E[X]: p
Dr. Xing© RandomVariable 17

Example Discrete r.v.s (2)

Binomial r.v.: is a r.v X that counts the number of successes in the n
independent Bernoulli trials, each trial has success probability of p and
failure probability of g (p+g=1).
- P.m.f P{X=0}=¢"
P{X =1}=C,pq""
PIX=24=C.p’q"”
In general, for k=0,1,2,...n
P{X =k}=C,p'q"" =blk;n, p)
- Cdf

Lx]
F(x)=P{X <x}=) C;p'q"" =B(x;n,p)

k=0

— E[XI:  Binomial r.v. X can be represented as X=X1+X2+...+Xn, each Xiis a
Bernoulli r.v. and they are independently identically distributed
(i.i.d), and E[X]=E[X1]+E[X2]+...E[Xn]=np

Dr. Xing© RandomVariable 18
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Example Discrete r.v.s (3)

e Geometricr.v.: is a r.v. that counts the number of

independent Bernoulli trials until the first success is

encountered.
Q={0""1|i=1,2,3...}, where 0 : failure; 1:success

- P.mn.f PiX=0}=p
P{X=1t=qp
PX=2=q"p

In general, for k=0,1,2,...
P{X=k}=q'p

o ]
Cadf p ()= PX <x}= 2.4'p

- EIX]: glp

Dr. Xing© RandomVariable 19

Example Discrete r.v.s (4)

e Poisson r.v.: is a r.v. defined by its p.m.f:

k

P{X=kl=e¢" %, A (constant)>0;k =0,1,2,3......

- E[X[EA

— Proposition: If X, Y are independent Poisson r.v.s with
parameter A,  respectively. Then Z=X+Y is also a Poisson
r.v. with parameter A+3, i.e., the p.m.f. of Z is

o (At8) (A + ﬂ)k

P{Z =k} = —

Dr. Xing© RandomVariable 20
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Poisson r.v.s (Cont’d)

* Applications: Poisson r.v.s are good for counting

things like
— # of transactions arriving to a DBMS per second
— # of customers arriving at a bank in an hour
— # of packets arriving at a switch per second

— In studying queueing system, the # of job arriving, # of
job completing service is usually able to be modeled as
Possion.

Dr. Xing© RandomVariable 21

Agenda

e Random Variable (r.v.)
— Basic concepts
— Discrete r.v.s

— Continuous r.v.s

Related reading: Allen’s Ch. 2.5~2.6, 3.0~3.2

Dr. Xing© RandomVariable 22
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Continuous Random Variable

v' Definitions

— Ar.v. that can take on a range of real values (uncountable!)
is said to be a continuous r.v.

e Characteristic functions

— Probability density function (p.d.f.) for continuous r.v.
¢ Important parameters of r.v.s

— Expectation/Mean: E[X], the kth moment

— Variance/standard deviation

— Squared coefficient of variation (C.O.V.) and C.O.V.
¢ Important example r.v.s

— Continuous: Uniform, Normal, Exponential

Dr. Xing© RandomVariable 23

Continuous 7.0.5 (1)

¢ Probability density function (p.d.f.)

The p.d.f. denoted by fy(x) for a continuous r.v. X is

defined by A

fx(x)=Fy(x)= e

— Fy(x)is c.d.fof r.v. X; since Fy(x) is non-decreasing in x >
fx(x)>0,Vxe R

— V x, P(X=x)=0; p.m.f. of a continuous r.v. assumes only the
value ZERO!

- And Fy@ =PX <a)=[" fy(x)dx
Fy0)=[ fy(x)dx=1
[ fy(x)ds = Pa < X <b)= F () - F (@

Dr. Xing© RandomVariable 24
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Continuous 7.70.5 (2)

* Expectation/Mean/Expected value of X

Let X be a continuous r.v. with p.d.f. fx(x), the mean of X,
denoted by p=E[X], is defined by
u=EX1=[ xf(0)dx

* Expectation of a function of ar.v. X

For any real-valued function g:
E[g(X)]= [ g(x) fy(x)dx
¢ The kth moment of X
The kth moment of X is defined by E[X¥], {k=1, 2, 3, ...}.

E[X*]= [ x* fr(x)dx

Dr. Xing© RandomVariable 25

Continuous 7.90.5 (3)

* Variance of X
If X is a r.v. with mean p, then the variance of X, denoted
by Var(X)=0? is defined by Var(X)= E[(X-u)?]
— If X is a continuous r.v., then

Var [X1=E[(X - u)’1= [ (x =) fy(x)dx

— An alternative formula:

VarlX]=E[X*]-(E[X])’ = E[X"]- 4’

Proof: Var[X]= E[(X - u)*]= E[X* =2uX + 4°]
= E[X*]-2uE[ X1+ E[4°]
= E[X*]-24° +* = E[X*]-u

Dr. Xing© RandomVariable 26
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Continuous 7.0.S (4)
e Standard deviation of X

The squared root of the variance Var(X) is called the
standard deviation of X:

6 =8D(X)=fVar [X]

e Squared coefficient of variation (C.0O.V)

_Var[X] _ o’
-2

C’ =
Y EXT n

e (Coefficient of variation (C.0O.V)

is defined as the squared root of Cy*:

Var[X] _

cov = 1_2
E[X] wn

Dr. Xing© RandomVariable 27

Continuous Random Variable

v" Definitions
v" A r.v. that can take on a range of real values (uncountable!)
is said to be a continuous r.v.
v" Characteristic functions
v’ Probability density function (p.d.f.) for continuous r.v.
v' Important parameters of r.v.s
v" Expectation/Mean: E[X], the kth moment
v’ Variance/standard deviation

v Squared coefficient of variation (C.0.V.) and C.O.V.

¢ Important example r.v.s

— Continuous: Uniform, Normal, Exponential

Dr. Xing© RandomVariable 28
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Example Continuous 7.v.5 (1)

* Uniform r.v.: a continuous r.v. is uniformly distributed
on the interval a to b if it's p.d.f.

L ifa<x<b

f(x)=1<b-a
0 otherwise

- Cd.f F(x)

0 x<a

Fx) =" fdu=1""2 a<x<b
== b-a

1 x>b

- E[X]
E[X]= a+b
2
Dr. Xing© RandomVariable 29

Example Continuous r.9.5 (2)

e Normal / Gaussian r.v.: a continuous r.v. is normally
distributed with parameter p and o? if its p.d.f:

1 _(-p)

2
200 | —0< x<©

—F¢€

f(x)= O'\/ﬁ
— Writeas: X ~N(y, 0?

— *Pd.f. of anormal r.v. has the well-known bell-shaped curve, that is
symmetric about p

- Standard normal distribution: u=0 and 0=1, X ~ N(0,1)

- E[X] =, Var[X] = 0% (Theorem 3.2.3)

— Suppose X;, X,, ..., X,, are n independent Normal r.v.s such that X; ~
N(uy, 042), X5~ N(uy, 052, ..., Xn ~N(y,, 0,2), then Y =X+ X, +...+ X, is
normally distributed with mean = i; + p,+...+ 1, variance = 0,> + 7,
+...+ 0,7 (Theorem 3.2.4)

Dr. Xing© RandomVariable 30
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Example Continuous 7.0.5 (3)

* Exponential r.v.: a continuous r.v. X has an exponential
distribution with parameter A if its p.d.f:

de™, x>0
f(x)_{o, x<0
- Cd.f
x l—-e*, x20
F(x)=j_wf(x)dx ={0, ‘<
f(x) F(x)
1 = _—
. ‘ i ‘
- E[X]=1/A

— Var[X]=1/A2

Dr. Xing© RandomVariable

Exponential r.v. (Cont’d)

e The rth percentile value of a r.v.: 1t/r]
— P{X <ml[r] } =r/100

— FPor exponential r.v. with parameter A: n[r]?

¢ Applications:

Time between 2 successive job arrivals to a file server (inter-

arrival time)

— Service time at a server in a queueing network

Time-to-failure of a component

Time required to repair a component that has malfunctioned

Dr. Xing© RandomVariable
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Properties of Exponential Distribution (1)

¢ “Memoryless/Markov” property:
— The future is independent of the past!

P{X>t+h|X>t}=P{X>h Vt,h>0

Dr. Xing© RandomVariable 33

Properties of Exponential Distribution (2)

* Suppose X;, X,, ..., X, are n independent exponential r.v.s
with parameters A;, A,,..., A, respectively, and Y=min{X,
Xy, ..., X,}. Then Y has an exponential distribution with
parameter A = A+ A, +...+ A . (Theorem 3.2.1 (h))

¢ If Xis an exponential r.v. with parameter A>0 -
- EX]=1T/A
~ Var[X] =1/ A2= E[X]2
— E[XX¥] =K/ Ak= KIE[X]¥
— The rth percentile value mt[r] defined by P{X <n[r] } =r/100 is

given by B 100
7lrl= ELX Jin( o

)

Dr. Xing© RandomVariable 34
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Poisson and Exponential (1)

# of arrivals of some entity (customer, job) per unit of
time Y is Poisson distributed with parameter A

|

Interarrival times T (time between any two successive
arrivals) are independent, identically exponentially
distributed with parameter A

Dr. Xing© RandomVariable 35

Poisson and Exponential (2)

* Specifically:

— If # of arrivals, Y, of some entity per unit of time is described by a
Poisson r.v. with parameter A. Then the time T between any two
successive arrivals (inter-arrival time) is independent of the inter-
arrival time of any other successive arrivals and has an exponential
distribution with parameter A. Thus, E[T]=1/ A, and P{T <'t}=1-exp(-
At) for t > 0 (Theorem 3.2.1 (f))

— Suppose inter-arrival times are i.i.d, exponential r.v.s, each with
mean 1/ A . Then the number of arrivals Y,, in any interval of length
t>0, has a Poisson distribution with parameter At, i.e., (Theorem
3.2.1(2)

—At (lt)k
|

P{Y,=k}=e , k =0,1,23...

Dr. Xing© RandomVariable 36
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Hands-on Problem

¢ Personnel of the Farout Eng. Company use an online

terminal to make routine engineering calculation. If the time
each engineer spends in a session at a terminal has an
exponential distribution with an average value of 36 minutes.
Find

— Probability that an engineer will spend 30 minutes or less at the

terminal?
— Probability that an engineer will use it for more than 1 hour?

— Probability that an engineer will spend more than another 1 hour at
the terminal if he or she has already been at the terminal for 1 hour?

— 90% of the sessions end in less than R minutes. What is the value of R?

Dr. Xing© 37

Next Topic

 Jointly distributed 7 v.s

Things to Do

» Homework

* Project proposal due February 23, Friday

Dr. Xing© RandomVariable 38
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