ECE560: Computer Systems Performance Evaluation

Lecture #6 –
Probability Theory (Part II Review)
- Random Variables

Instructor: Dr. Liudong Xing Spring 2024

Administration Issues (2/7)

- Homework #2
 - Please download problems from course website
 - Due: February 12, Monday
- Project proposal (refer to Guidelines)
 - Due: February 23, Friday

Review of Lecture#5

- Probability theory: a basic tool for modeling random / uncertain phenomena
 - Sample spaces & events
 - Axioms of probability
 - Field, σ -field, and probability measure
 - Odds for and odds against
 - Conditional probability & law of total probability
 - Pair-wise vs mutually independence

Related reading: Allen's Ch. 2.0~2.4

Dr. Xing© Probability

Topics

- Random Variable (*r.v.*)
 - Basic concepts
 - Discrete r.v.s
 - Continuous r.v.s

Related reading: Allen's Ch. 2.5~2.6, 3.0~3.2

Random Variable

- Informally, a random variable (r.v.) X is a real-valued function from some sample space Ω to R, *i.e.*, $X: \Omega \rightarrow R$
- A r.v. X maps each outcome ω in Ω to a real number $X(\omega) \in R$
- r.v. is not random or variable, but a function
- The mapping is not random but deterministic

Dr. Xing© RandomVariable

Random Variable Example

- "tossing a fair coin three times"
 - Ω = {TTT; TTH; THT; THH; HTT; HTH; HHT; HHH}
 - Let X be the number of heads tossed in 3 times
 - We can map each outcome in Ω to a real number.

Distribution Function

• <u>Definition</u>: The <u>cumulative distribution function</u> (c.d.f.) or more simply the <u>distribution function</u> F of a *r.v.* X is defined for each real number *x*, by

$$F(x) = P[\{\omega : \omega \in \Omega \text{ AND } X(\omega) \le x\}]$$
$$= P\{X \le x\}$$

- Property:
 - F is a non-decreasing function

If
$$x < y$$
 then $F(x) \le F(y)$

- For all x < y, $P\{x < X \le y\} = F(y) F(x)$
- Also, $\lim_{x\to\infty} F(x) = 1$ $\lim_{x\to\infty} F(x) = 0$

Dr. Xing© RandomVariable

Discrete vs. Continuous Random Variable

• A r.v. that can take on (at most) a countable number of possible values is said to be a *discrete* r.v.

Example: tossing coin example

• A r.v. that can take on a range of real values (uncountable!) is said to be a *continuous* r.v.

<u>Example</u>: the time of arrival of a packet to a switch

- In general, the time when a particular event occurs

Discrete vs. Continuous Random Variable (Agenda)

✓ Definitions

- Characteristic functions
 - Probability mass function (p.m.f.) for discrete *r.v.*
 - Probability density function (p.d.f.) for continuous *r.v.*
- Important parameters of *r.v.*s
 - Expectation/Mean: E[X], the kth moment
 - Variance/standard deviation
 - Squared coefficient of variation (C.O.V.) and C.O.V.
- Important example *r.v.*s
 - Discrete: Bernoulli, Binomial, Geometric, Poisson
 - Continuous: Uniform, Normal, Exponential

Dr. Xing© RandomVariable

Discrete Random Variable (1)

• Probability mass function (p.m.f.)

The p.m.f. denoted by $P_X(x)$ for a discrete r.v. X is defined by $p_X(x) = P\{X = x\}$ $= P[\{\omega : \omega \in \Omega \mid X(\omega) = x\}]$

-
$$P_X(x)$$
 is the probability that the r.v. X takes on a value of x

- $-0 \le p_X(x) \le 1$
- Since *r.v.* assigns some real value x ∈ R to each sample point ω ∈ Ω, we must have

$$\sum_{x \in R} p_X(x) = 1 \quad \text{or} \quad \sum_{x_i \in T} p_X(x_i) = 1$$

where $T = \{x_1, x_2, ...\}$ is the image of X

Discrete Random Variable (2)

• Expectation/Mean/Expected value of X

Let X be a discrete r.v. with p.m.f. $p_X(x)$, the mean of X, denoted by μ =E[X], is defined by

$$\mu = E[X] = \sum_{x_i \in T} (x_i \bullet p_X(x_i))$$

• Expectation of a function of a r.v. X

If X is a discrete r.v. that takes on one of the values $x_i \in T$ with respective probability $p_X(x_i)$, then for any real-valued function g:

$$E[g(X)] = \sum_{x_i \in T} (g(x_i) \bullet p_X(x_i))$$

Dr. Xing© RandomVariable 11

Discrete Random Variable (3)

• The *k*th moment of X

The kth moment of X is defined by $E[X^k]$, $\{k = 1, 2, 3, ...\}$.

$$E[X^k] = \sum_{x_i \in T} (x_i^k \bullet p_X(x_i))$$

Discrete Random Variable (4)

• Variance of X

If X is a r.v. with mean μ , then the variance of X, denoted by $Var(X) = \delta^2$, is defined by $Var(X) = E[(X-\mu)^2]$

– If X is a discrete r.v., then

$$Var[X] = E[(X - \mu)^2] = \sum_{x_i \in T} [(x_i - \mu)^2 \bullet p_X(x_i)]$$

- An alternative formula:

$$Var[X] = E[X^2] - (E[X])^2 = E[X^2] - \mu^2$$

Dr. Xing© RandomVariable 13

Discrete Random Variable (5)

• <u>Standard deviation of X</u>

The squared root of the variance Var(X) is called the standard deviation of X:

$$\sigma = SD(X) = \sqrt{Var[X]}$$

• Squared coefficient of variation (C.O.V)

$$C_X^2 = \frac{Var[X]}{E[X]^2} = \frac{\sigma^2}{\mu^2}$$

• Coefficient of variation (C.O.V)

$$COV = \sqrt{\frac{Var[X]}{E[X]^2}} = \frac{\sigma}{\mu}$$

Dr. Xing©

RandomVariable

Discrete Random Variable (6)

• Hands-on problem:

"tossing a fair coin 3 times"

Let *r.v.* X be the number of heads tossed in 3 times

- Define the p.m.f.? c.d.f.?
- Find the mean, and the variance of X?

Dr. Xing© RandomVariable 15

Discrete Random Variable (Agenda)

- ✓ Definitions
 - ✓ A r.v. that can take on (at most) a countable number of possible values is said to be a *discrete* r.v.
- ✓ Characteristic functions
 - ✓ Probability mass function (p.m.f.) for discrete r.v.
- ✓ Important parameters of r.v.s
 - ✓ Expectation/Mean: E[X], the *k*th moment
 - ✓ Variance/standard deviation
 - ✓ Squared coefficient of variation (C.O.V.) and C.O.V.
- Important example r.v.s
 - Discrete: Bernoulli, Binomial, Geometric, Poisson

Example Discrete r.v.s (1)

- Bernoulli r.v.: has a 0 and 1 as its only possible values
 - Originates from the *Bernoulli trial*, which is a random experiment in which there are only 2 possible outcomes: success (1) or failure (0), with respective probability p and q, where p+q=1.
 - $\underline{P.m.f.}$: $P\{X=1\} = p_X(1) = p_1 = p$ $P\{X=0\} = p_X(0) = p_0 = q = 1 - p$
 - $F(x) = \begin{cases} 0 & x < 0 \\ q & 0 \le x < 1 \\ p + q = 1 & x \ge 1 \end{cases}$
 - <u>E[X]:</u> p

Dr. Xing© RandomVariable 17

Example Discrete r.v.s (2)

- <u>Binomial r.v.</u>: is a r.v X that counts the number of successes in the n independent Bernoulli trials, each trial has success probability of p and failure probability of q (p+q=1).
 - $P\{X = 0\} = q^n$ $P\{X = 1\} = C_n^1 p q^{n-1}$

 $P\{X=2\} = C_n^2 p^2 q^{n-2}$

In general, for k = 0,1,2,...n

 $P\{X = k\} = C_n^k p^k q^{n-k} = b(k; n, p)$

- <u>C.d.f.</u>: $F(x) = P\{X \le x\} = \sum_{k=0}^{\lfloor x \rfloor} C_n^k p^k q^{n-k} = B(x; n, p)$

- E[X]: Binomial r.v. X can be represented as X=X1+X2+...+Xn, each Xi is a Bernoulli r.v. and they are independently identically distributed (i.i.d), and E[X]=E[X1]+E[X2]+...E[Xn]=np

Example Discrete *r.v.*s (3)

• Geometric r.v.: is a r.v. that counts the number of independent Bernoulli trials until the first success is encountered.

$$\Omega = \{0^{i-1}1 \mid i = 1, 2, 3 \dots\}, \text{ where } 0 \text{ : failure; } 1 \text{ : success}$$

$$- \underbrace{P \cdot M \cdot f}_{P\{X = 0\} = p} P\{X = 1\} = qp$$

$$P\{X = 2\} = q^2 p$$
.....
In general, for $k = 0, 1, 2, \dots$

$$P\{X = k\} = q^k p$$

$$- \underbrace{C \cdot d \cdot f}_{X} F_X(x) = P\{X \le x\} = \sum_{k=0}^{\lfloor x \rfloor} q^k p$$

$$- \underbrace{E[X]:}_{P\{X = k\}} q^k p$$
Dr. Xing© Random Variable

Example Discrete r.v.s (4)

19

• Poisson r.v.: is a r.v. defined by its p.m.f:

$$P\{X = k\} = e^{-\lambda} \frac{\lambda^k}{k!}, \ \lambda \text{ (constant)} > 0; \ k = 0,1,2,3.....$$

- $-E[X]=\lambda$
- <u>Proposition:</u> If X, Y are independent Poisson *r.v.*s with parameter λ , β respectively. Then Z=X+Y is also a Poisson r.v. with parameter λ + β , i.e., the p.m.f. of Z is

$$P\{Z = k\} = e^{-(\lambda+\beta)} \frac{(\lambda+\beta)^k}{k!}$$

Poisson *r.v.*s (Cont'd)

- *Applications*: Poisson r.v.s are good for counting things like
 - # of transactions arriving to a DBMS per second
 - # of customers arriving at a bank in an hour
 - # of packets arriving at a switch per second
 - In studying queueing system, the # of job arriving, # of job completing service is usually able to be modeled as Possion.

Dr. Xing© RandomVariable 21

Agenda

- Random Variable (r.v.)
 - Basic concepts
 - Discrete r.v.s
 - Continuous r.v.s

Related reading: Allen's Ch. 2.5~2.6, 3.0~3.2

Continuous Random Variable

- ✓ Definitions
 - A r.v. that can take on a range of real values (uncountable!)
 is said to be a *continuous* r.v.
- Characteristic functions
 - Probability density function (p.d.f.) for continuous r.v.
- Important parameters of *r.v.*s
 - Expectation/Mean: E[X], the kth moment
 - Variance/standard deviation
 - Squared coefficient of variation (C.O.V.) and C.O.V.
- Important example *r.v.*s
 - Continuous: Uniform, Normal, Exponential

Dr. Xing© RandomVariable 23

Continuous r.v.s (1)

• Probability density function (p.d.f.)

The p.d.f. denoted by $f_X(x)$ for a continuous r.v. X is defined by

$$f_X(x) = F_X(x) = \frac{dF_X(x)}{dx}$$

- $F_X(x)$ is *c.d.f* of r.v. X; since $F_X(x)$ is non-decreasing in x → $f_X(x) \ge 0$, $\forall x \in \mathbb{R}$
- \forall x, P(X=x)=0; p.m.f. of a continuous r.v. assumes only the value ZERO!
- And

$$F_X(a) = P(X \le a) = \int_{-\infty}^a f_X(x) dx$$

$$F_X(\infty) = \int_{-\infty}^{\infty} f_X(x) dx = 1$$

$$\int_{a}^{b} f_{X}(x) dx = P(a \le X \le b) = F_{X}(b) - F_{X}(a)$$

Dr. Xing©

RandomVariable

Continuous r.v.s (2)

• Expectation/Mean/Expected value of X

Let X be a continuous r.v. with p.d.f. $f_X(x)$, the mean of X, denoted by μ =E[X], is defined by

$$\mu = E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• Expectation of a function of a r.v. X

For any real-valued function *g*:

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

• The *k*th moment of X

The *k*th moment of X is defined by $E[X^k]$, $\{k = 1, 2, 3, ...\}$.

$$E[X^k] = \int_{-\infty}^{\infty} x^k f_X(x) dx$$

Dr. Xing© RandomVariable

25

Continuous r.v.s (3)

• Variance of X

If X is a r.v. with mean μ , then the variance of X, denoted by $Var(X) = \delta^2$, is defined by $Var(X) = E[(X-\mu)^2]$

– If X is a continuous *r.v.*, then

Var
$$[X] = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx$$

- An alternative formula:

$$Var[X] = E[X^2] - (E[X])^2 = E[X^2] - \mu^2$$

Proof:
$$Var[X] = E[(X - \mu)^{2}] = E[X^{2} - 2\mu X + \mu^{2}]$$
$$= E[X^{2}] - 2\mu E[X] + E[\mu^{2}]$$
$$= E[X^{2}] - 2\mu^{2} + \mu^{2} = E[X^{2}] - \mu^{2}$$

Continuous r.v.s (4)

• Standard deviation of X

The squared root of the variance Var(X) is called the standard deviation of X:

$$\sigma = SD(X) = \sqrt{Var[X]}$$

• Squared coefficient of variation (C.O.V)

$$C_X^2 = \frac{Var[X]}{E[X]^2} = \frac{\sigma^2}{\mu^2}$$

• Coefficient of variation (C.O.V)

is defined as the squared root of C_X^2 :

$$COV = \sqrt{\frac{Var[X]}{E[X]^2}} = \frac{\sigma}{\mu}$$

Dr. Xing©

RandomVariable

27

28

Continuous Random Variable

- ✓ Definitions
 - ✓ A r.v. that can take on a range of real values (uncountable!) is said to be a *continuous* r.v.
- ✓ Characteristic functions
 - ✓ Probability density function (p.d.f.) for continuous *r.v.*
- ✓ Important parameters of r.v.s
 - ✓ Expectation/Mean: E[X], the *k*th moment
 - ✓ Variance/standard deviation
 - ✓ Squared coefficient of variation (C.O.V.) and C.O.V.
- <u>Important example *r.v.s*</u>
 - Continuous: Uniform, Normal, Exponential

Example Continuous r.v.s (1)

• <u>Uniform r.v</u>.: a continuous r.v. is uniformly distributed on the interval *a* to *b* if it's <u>p.d.f</u>.

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$$

- $\underline{C.d.f: F(x)}$

$$F(x) = \int_{-\infty}^{x} f(u)du = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x \ge b \end{cases}$$

- E[X]

$$E[X] = \frac{a+b}{2}$$

Dr. Xing©

RandomVariable

20

Example Continuous r.v.s (2)

• Normal / Gaussian r.v.: a continuous r.v. is normally distributed with parameter μ and σ^2 if its $\underline{p.d.f}$.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

- Write as: $X \sim N(\mu, \sigma^2)$
- * Pd.f. of a normal r.v. has the well-known bell-shaped curve, that is symmetric about μ
- Standard normal distribution: μ =0 and σ =1, $X \sim N(0,1)$
- $E[X] = \mu$, $Var[X] = \sigma^2$ (*Theorem 3.2.3*)
- Suppose $X_1, X_2, ..., X_n$ are n independent Normal r.v.s such that $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2), ..., X_n \sim N(\mu_n, \sigma_n^2)$, then $Y = X_1 + X_2 + ... + X_n$ is normally distributed with mean = $\mu_1 + \mu_2 + ... + \mu_n$ variance = $\sigma_1^2 + \sigma_2^2 + ... + \sigma_n^2$ (*Theorem 3.2.4*)

Dr. Xing©

RandomVariable

Example Continuous r.v.s (3)

• Exponential r.v.: a continuous r.v. X has an exponential distribution with parameter λ if its p.d.f:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

- <u>C.d.f:</u>

$$F(x) = \int_{-\infty}^{x} f(x)dx = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

- $E[X]=1/\lambda$
- $Var[X]=1/\lambda^2$

Dr. Xing©

RandomVariable

31

Exponential r.v. (Cont'd)

- The *r*th percentile value of a *r.v.*: $\pi[r]$
 - $P\{X \le \pi[r]\} = r/100$
 - For exponential r.v. with parameter λ : $\pi[r]$?
- Applications:
 - Time between 2 successive job arrivals to a file server (interarrival time)
 - Service time at a server in a queueing network
 - Time-to-failure of a component
 - Time required to repair a component that has malfunctioned

Dr. Xing©

RandomVariable

Properties of Exponential Distribution (1)

- <u>"Memoryless/Markov" property</u>:
 - The future is independent of the past!

$$P{X > t + h \mid X > t} = P{X > h} \quad \forall t, h > 0$$

Dr. Xing© RandomVariable 33

Properties of Exponential Distribution (2)

- Suppose X_1 , X_2 , ..., X_n are n independent exponential r.v.s with parameters λ_1 , λ_2 , ..., λ_n , respectively, and $Y=min\{X_1, X_2, ..., X_n\}$. Then Y has an exponential distribution with parameter $\lambda = \lambda_1 + \lambda_2 + ... + \lambda_n$. (*Theorem 3.2.1 (h)*)
- If X is an exponential r.v. with parameter $\lambda > 0 \rightarrow$
 - E[X] = $1/\lambda$
 - $Var[X] = 1/\lambda^2 = E[X]^2$
 - $E[X^k] = k!/\lambda^k = k!E[X]^k$
 - The *r*th percentile value $\pi[r]$ defined by $P\{X \le \pi[r]\} = r/100$ is given by $\pi[r] = E[X] \ln(\frac{100}{100 r})$

Poisson and Exponential (1)

of arrivals of some entity (customer, job) per unit of time Y is *Poisson* distributed with parameter λ

Interarrival times T (time between any two successive arrivals) are independent, identically *exponentially* distributed with parameter λ

Dr. Xing© RandomVariable 3:

Poisson and Exponential (2)

- Specifically:
 - If # of arrivals, Y, of some entity per unit of time is described by a Poisson r.v. with parameter λ . Then the time T between any two successive arrivals (inter-arrival time) is independent of the inter-arrival time of any other successive arrivals and has an exponential distribution with parameter λ . Thus, E[T]=1/ λ , and P{T ≤t}=1-exp(- λ t) for t ≥ 0 (*Theorem 3.2.1 (f*))
 - Suppose inter-arrival times are i.i.d, exponential r.v.s, each with mean $1/\lambda$. Then the number of arrivals Y_t , in any interval of length t>0, has a Poisson distribution with parameter λt , i.e., (*Theorem*

3.2.1 (g))
$$P\{Y_t = k\} = e^{-\lambda t} \frac{(\lambda t)^k}{k!}, \quad k = 0,1,2,3... \dots$$

Hands-on Problem

- Personnel of the Farout Eng. Company use an online terminal to make routine engineering calculation. If the time each engineer spends in a session at a terminal has an exponential distribution with an average value of 36 minutes. Find
 - Probability that an engineer will spend 30 minutes or less at the terminal?
 - Probability that an engineer will use it for more than 1 hour?
 - Probability that an engineer will spend more than another 1 hour at the terminal if he or she has already been at the terminal for 1 hour?
 - 90% of the sessions end in less than R minutes. What is the value of R?

Dr. Xing©

Next Topic

• Jointly distributed r.v.s

Things to Do

- Homework
- Project proposal due **February 23, Friday**