ECE560: Computer Systems Performance Evaluation

Lecture #7
Probability Theory (Part III)
- Jointly Distributed R.V.

Instructor: Dr. Liudong Xing Spring 2024

Administration Issues (2/14)

- Homework #3 assigned
 - Due: February 21, Wednesday
- No classes on Monday, February 19 (President's Day Holiday)
 - Tuesday follows Monday's class schedule
- Project proposal (refer to Guidelines)
 - Due: February 23, Friday

Review of Lecture #6

- Definitions of discrete and continuous random variables
- Characteristic functions
 - Cumulative distribution function (c.d.f) for discrete and continuous r.v.s
 - Probability mass function (p.m.f.) for discrete *r.v.*
 - Probability density function (p.d.f.) for continuous *r.v.*
- Important parameters of *r.v.s*
 - Expectation/Mean: E[X], the kth moment
 - Variance/standard deviation
 - Squared coefficient of variation (C.O.V.) and C.O.V.
- Important example *r.v.s*
 - Discrete: Bernoulli, Binomial, Geometric, Poisson
 - Continuous: Uniform, Normal, Exponential

Dr. Xing©

Jointly Distributed *r.v.s* (*Agenda*)

- Joint distribution function
- Marginal distribution function
- Joint/marginal/conditional *p.m.f.*
- Joint/marginal/conditional *p.d.f.*
- Independency
- Important parameters
- Two important properties

Related reading: Allen's Ch. 2.7

Jointly Distributed *r.v.s* (1)

- Let X and Y be two r.v.s defined on the *same* probability space (Ω, F, P) . The **events** $[X \le x, Y \le y]$ consists of all sample points $\omega \in \Omega$, such that $X(\omega) \le x$ and $Y(\omega) \le y$
- Joint distribution function (J.D.F)

$$F_{X,Y}(x,y) = P[X \le x, Y \le y], \forall x, y \in R$$

• Marginal distribution function (M.D.F)

Given $F_{X,Y}$, the individual distribution function $F_X(x)$ and $F_Y(y)$ can be computed as: $F_X(x) = \lim_{x \to \infty} F_{X,Y}(x, y), \forall x \in R$

$$F_{Y}(y) = \lim_{y \to \infty} F_{X,Y}(x, y), \forall x \in \mathbb{R}$$

$$F_{X,Y}(y) = \lim_{x \to \infty} F_{X,Y}(x, y), \forall y \in \mathbb{R}$$

 F_X and F_Y are called the M.D.F. of X and Y, respectively

Dr. Xing© Joint R.V.

Jointly Distributed *r.v.s* (2)

- Probability mass function (pmf) for discrete r.v.s
 - Joint pmf:

$$p(x, y) = P[X = x, Y = y]$$

Marginal pmf:

$$p_X(x) = \sum_{y} p(x, y)$$
$$p_Y(y) = \sum_{x} p(x, y)$$

- Conditional pmf:

$$p_{X|Y}(x|y) = p\{X = x | Y = y\} = \frac{p(x,y)}{p_Y(y)}$$

Jointly Distributed *r.v.s* (3)

- Probability density function (pdf) for continuous *r.v.*s
 - Joint:

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$
$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv$$

- Marginal:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

- Conditional:

$$f_{X|Y}(x \mid y) = f(x,y) / f_{Y}(y)$$

Dr. Xing©

Joint R.V.

7

Hands-on Problem (1)

• Suppose two discrete *r.v.*s X and Y have the following joint *p.m.f* as shown in the table. Thus,

X assumes values 1, 2, and 3;

Y assumes values of 2, 3, and 4.

X Y	2	3	4
1	1/6	1/6	1/6
2	0	1/6	1/6
3	0	0	1/6

- Find the marginal p.m.f. p_X and p_Y
- Find the conditional p.m.f. of Y, given that X=1
- Calculate E[X] and Var[X]
- Find p.m.f for Z=X+Y

Dr. Xing©

Joint R.V.

8

Jointly Distributed *r.v.s* (*Agenda*)

- Joint distribution function
- Marginal distribution function
- Joint/marginal/conditional *p.m.f.*
- Joint/marginal/conditional *p.d.f.*
- Independency
- Important parameters
- Two important properties

Related reading: Allen's Ch. 2.7

Dr. Xing© Joint R.V.

Jointly Distributed r.v.s (4)

• Independent r.v.s

Two r.v.s X and Y are independent if

$$F_{X,Y}(x,y) = F_X(x)F_Y(y) \forall x \forall y$$

Discrete: $p(x, y) = p_X(x)p_Y(y) \forall x \forall y$

Continuous: $f(x, y) = f_X(x) f_Y(y) \forall x \forall y$

Hands-on Problem (1: Cont'd)

• Suppose two discrete *r.v.*s X and Y have the following joint *p.m.f* as shown in the table. Thus, X assumes values 1, 2, and 3; Y assumes values of 2, 3, and 4.

X Y	2	3	4
1	1/6	1/6	1/6
2	0	1/6	1/6
3	0	0	1/6

- ✓ Find the marginal p.m.f. p_x and p_y :
- ✓ Find the conditional *p.m.f.* of Y, given that X=1:
- ✓ Calculate E[X] and Var[X]
- ✓ Find p.m.f for Z=X+Y
- Are X and Y independent random variables? Why?

Dr. Xing© Joint R.V.

Jointly Distributed r.v.s (Agenda)

- ✓ Joint distribution function
- ✓ Marginal distribution function
- ✓ Joint/marginal/conditional *p.m.f.*
- ✓ Joint/marginal/conditional *p.d.f.*
- ✓ Independency
- <u>Important parameters</u>
 - Expectation, Variance, Covariance, Correlation
- Two important properties

Jointly Distributed *r.v.s* (5)

• Expectation

X, Y are jointly distributed r.v.s, g is a function of 2 r.v.s

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p(x,y) \quad \text{for discrete}$$

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dx dy \quad \text{for continuous}$$

Properties (Theorem 2.7.1)

```
E [c] = c
E [cX] = cE [X]
E [X + Y] = E [X] + E [Y]
E [XY] = E [X]E [Y] \text{ if } X \coprod Y
E [g(X)h(Y)] = E [g(X)]E[h(Y)] \text{ if } X \coprod Y
```

Dr. Xing© Joint R.V.

Jointly Distributed *r.v.s* (6)

 $Var(X) = E[(X-\mu)^2]$

• Covariance of X and Y, cov[X,Y]

cov[
$$X, Y$$
] = $E[(X - E[X])(Y - E[Y])]$
= $E[XY] - E[X]E[Y]$

Remarks

- If cov[X,Y]=0, X and Y are said to be *uncorrelated*
- Two independent r.v.s are uncorrelated, but not all uncorrelated r.v.s are independent!

Jointly Distributed *r.v.s* (7)

• Variance (*Theorem 2.7.2*)

X, Y are *r.v.*s, c is a constant

$$Var[c] = 0$$

$$Var[cX] = c^{2}Var[X]$$

$$Var[X + Y] = Var[X] + Var[Y] + 2 \operatorname{cov}[X, Y]$$

$$Var[X + Y] = Var[X] + Var[Y] \quad \text{if} \quad X \coprod Y$$

$$Var[X] = E[X^{2}] - E^{2}[X]$$

Dr. Xing© Joint R.V.

Jointly Distributed *r.v.s* (8)

• Correlation (coefficient) of X, Y, o (X,Y)

$$\rho[X,Y] = \frac{\text{cov}[X,Y]}{\sqrt{Var[X]Var[Y]}},$$

$$Var[X] \neq 0 \text{ and } Var[Y] \neq 0$$

Concepts and properties for two r.v.s can be extended to any finite number of r.v.s

Jointly Distributed *r.v.s* (*Agenda*)

- ✓ Joint distribution function
- ✓ Marginal distribution function
- ✓ Joint/marginal/conditional *p.m.f.*
- ✓ Joint/marginal/conditional *p.d.f.*
- ✓ Independency
- ✓ Important parameters
- Two important properties: Max and Min

Dr. Xing© Joint R.V.

Max Theorem 2.7.3

• Let $X_1, X_2, ..., X_n$ be n independent r.v.s with distribution function $F_{X1}, F_{X2}, ..., F_{Xn}$. Let $r.v. Y = g(X_1, X_2, ..., X_n)$, if $Y(\omega) = \max\{X_1(\omega), X_2(\omega), ..., X_n(\omega)\}, \ \omega \in \Omega$, then

$$\boldsymbol{F}_{\boldsymbol{Y}}(\boldsymbol{y}) = \boldsymbol{F}_{\boldsymbol{X}1}(\boldsymbol{y}) \boldsymbol{F}_{\boldsymbol{X}2}(\boldsymbol{Y}) ... \boldsymbol{F}_{\boldsymbol{X}n}(\boldsymbol{y}) \quad \forall \boldsymbol{y} \in \boldsymbol{R}$$

Hands-On Problem (2)

- An on-line airline reservation system uses 2 identical duplexed computer systems, each of which has an exponential time-to-failure with a mean of 2000 hours. Each CS has built-in redundancy so failures are rare. The entire CS fails only if both computers fail.
- Question: probability that the system will not fail during 1 week of continuous operation?

Dr. Xing© Joint R.V.

Min Theorem 2.7.4

• Let $X_1, X_2, ..., X_n$ be n independent r.v.s with distribution function $F_{X1}, F_{X2}, ..., F_{Xn}$. Let $r.v. Y = g(X_1, X_2, ..., X_n)$, if $Y(\omega) = \min\{X_1(\omega), X_2(\omega), ..., X_n(\omega)\}, \ \omega \in \Omega$, then

$$F_{Y}(y) = 1 - (1 - F_{X1}(y))(1 - F_{X2}(Y))...(1 - F_{Xn}(y)) \quad \forall y \in R$$

Hands-On Problem (3)

- A computer system (CS) consists 4 subsystems, each of which has the same exponential time-to-failure with a mean of 2000 hours. Each subsystem is independent but the entire CS fails if any of the subsystems fails.
- Question:
 - The mean time to entire system failure?
 - The probability that time-to-failure exceed 100 hours?

Dr. Xing© Joint R.V. 21

Hands-On Problem (4)

- A computing system consists of 3 processing units A, B, and C, each of which has the same exponential time-to-failure with parameter λ =10⁻⁴/hour. Each unit is independent. The entire system functions correctly if both "A and B are working" or "C is working". In other words, the entire system fails if "either A or B fails" and "C fails" at the same time.
- Question:
 - The probability that the system will not fail during 10⁴ hours of continuous operation?

Next Topics

- Statistical Inference
- Stochastic Processes

Things to Do

- Homework
- Project proposal due February 23, Friday