ECE560: Computer Systems Performance Evaluation

Lecture #8 –
Statistical Inference

Instructor: Dr. Liudong Xing Spring 2024

Topics

- <u>Statistical Inference</u>
- Population *vs.* Sample
- Parameter estimators
- Confidence interval

Chapter 7 in Allen's book

This is a self-study lecture!

Dr. Xing ©

Statistical Inference

Statistical Inference (S.I.)

- Let X represent a performance measure of interest, e.g.
 - response time,
 - # of arrivals / completion per unit of time
- X can be regarded as a *r.v.* with an unknown distribution or with a known distribution form but with unknown parameters
- <u>Task/goal</u> is to estimate the unknown parameters based on the data collected from the experiments.

Dr. Xing © Statistical Inference 3

Basic Concepts (1)

Population

- A set of data points consists of all possible observations of a *r.v.* X
- In general, a collection of elements under investigation

Sample

- A set of data points contains only part of all possible observations of a r.v. X
- In general, a selected subset of a population

Dr. Xing ©

Statistical Inference

Basic Concepts (2)

- Methods of S.I. help us estimate the characteristics of the entire population based on the data collected from a sample.
- Population characteristics are called parameters
 - Mean (population/true mean): μ
 - Variance (population/true variance): σ^2
 - Standard deviation: σ
- Sample estimates are called statistics
 - Sample mean: \bar{x}
 - Sample variance: s^2
 - Sample standard deviation: s

Dr. Xing © Statistical Inference 5

Basic Concepts (3)

- Population parameters are **fixed**
- Statistics are random; different samples from the same population usually result in distinct estimates

Dr. Xing ©

Statistical Inference

2

Basic Concepts (4)

Definition: Suppose we perform n measurements and observe a set of n experimental outcomes x₁, x₂, ..., x_n. Each outcome x_i is a value of a r.v. X_i. Then, the set of r.v.s X₁, X₂, ..., X_n is called a sample of size n from the population.

Dr. Xing © Statistical Inference 7

Basic Concepts (5)

- <u>Definition</u>: The set of $r.v.s X_1, X_2, ..., X_n$ is said to constitute a <u>random sample</u> of size n from the population that is determined by r.v. X (its c.d.f. is $F_X(x)$), provided that a) they are mutually independent and b) they are identically distributed with distribution $F_{Xi}(x) = F_X(x)$, for all i, for all $x. \rightarrow$
- $x_1, x_2, ..., x_n$ are observed values of a random sample.
- <u>Definition</u> (Statistic): any function of a random sample X_1 , X_2 , ..., X_n .
 - A statistic is also a r.v.,
 - Its distribution function -- "sampling distribution"

Dr. Xing ©

Statistical Inference

Basic Concepts (6)

- <u>Definition</u> (Estimator): any statistic $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots X_n)$ used to estimate the value of a parameter θ of the population is called an <u>estimator</u> of θ
 - An observed value of the statistics $\hat{\mathbf{\theta}} = \hat{\mathbf{\theta}}(x_1, x_2, \dots x_n)$ is known as an estimate of θ
 - The two most common estimators are:
 - Sample mean (arithmetic mean) $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 - Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$
 - \overline{X} is an estimator of μ ,
 - S^2 is an estimator of σ^2
 - Important properties
 - Unbiasedness
 - Consistency
 - Efficiency

Dr. Xing ©

Statistical Inference

9

Properties of Parameter Estimators (1)

- <u>Unbiasedness</u>: A statistic $\hat{\theta}$ is said to constitute an unbiased estimator of parameter θ if $E[\hat{\theta}] = \theta$
 - An estimator $\hat{\theta}$ is unbiased if $E[\hat{\theta}] = \theta$
 - In other words, on the average, the estimator is on target, or the estimated values of θ cluster about θ

Dr. Xing ©

Statistical Inference

Properties of Parameter Estimators (2)

- The sample mean \overline{X} is an unbiased estimator
 - Proof (extra notes)
 - We can also compute the variance of \overline{X}

$$\operatorname{var}[\overline{X}] = \frac{\sigma^2}{n}$$

 \rightarrow the accuracy of the sample mean as an estimator of the population mean μ increases with the sample size n when the population variance is finite

$$SD[\overline{X}] = \sqrt{\frac{\sigma^2}{n}} = \frac{\sigma}{\sqrt{n}}$$
 is often called the

"standard error"

• Since usually we don't know the value of σ ,

The approximate value of the standard error is taken to be s/\sqrt{n} where $s=\sqrt{s^2}$ is the sample SD

11

Dr. Xing © Statistical Inference

Properties of Parameter Estimators (3)

- The sample variance S^2 is an unbiased estimator
 - Proof (extra notes)
 - The proof shows why the denominator should be *n-1*

Dr. Xing ©

Statistical Inference

Properties of Parameter Estimators (4)

• <u>Consistency</u>: An estimator $\hat{\theta}$ of parameter θ is said to be consistent if $\hat{\theta}$ converges in probability to θ

$$\lim_{n \to \infty} P\{ \left| \hat{\theta} - \theta \right| < e \} = 1$$

$$\lim_{n\to\infty} P\{\left|\hat{\theta}-\theta\right| \ge e\} = 0 \quad (\forall e > 0)$$

Dr. Xing © Statistical Inference 13

Properties of Parameter Estimators (5)

- Efficiency: An estimator $\hat{\theta}_1$ is said to be a more efficient estimator of the parameter θ than the estimator $\hat{\theta}_2$, if
 - $\hat{\theta}_1$ and $\hat{\theta}_2$ are both unbiased estimators of θ
 - $\operatorname{var}[\hat{\theta}_1] < \operatorname{var}[\hat{\theta}_2]$
- An unbiased estimator $\hat{\theta}$ is the *minimum variance unbiased estimator* of θ if

$$\operatorname{var}[\hat{\theta}] < \operatorname{var}[\hat{\theta}_1]$$

where $\hat{\theta}_i$ is any other unbiased estimator of θ

- $\rightarrow \hat{\theta}$ is the most efficient estimator
- Sample mean is the minimum variance / the most efficient estimator of the population mean
- Sample variance is the minimum variance / the most efficient estimator of the population variance

Dr. Xing ©

Statistical Inference

Properties of Parameter Estimators (6)

- In summary, sample mean $\bar{\chi}$ (sample variance S^2) is the most efficient, unbiased and consistent estimator of population mean μ (population variance σ^2)
- The properties of estimators, such as being unbiased, consistent and the minimum-variance unbiased, etc., cannot help us make a probability judgment about the quality or accuracy of the estimates delivered
- The confidence intervals enable us to do that!

Dr. Xing © Statistical Inference 15

Confidence Intervals

• Probability statement: if we can ascertain that the estimator $\hat{\theta}$ satisfies the condition $\Pr{\{\hat{\theta} - \varepsilon_1 < \theta < \hat{\theta} + \varepsilon_2\}} = \alpha$ then, we can say that the interval $(\hat{\theta} - \varepsilon_1, \hat{\theta} + \varepsilon_2)$ is a $100\alpha\%$ confidence interval for parameter θ

- $-\alpha$ is called "confidence coefficient"
- 100α is called "confidence level"
- $-1-\alpha$ is called "significance level"
- $-\varepsilon_1 + \varepsilon_2$ is the interval width ($\varepsilon_1 = \varepsilon_2 = \varepsilon$: Symmetric interval)

Dr. Xing ©

Statistical Inference

Confidence Intervals (2)

- 95% and 99% confidence interval are particularly popular, corresponding to α values of 0.95 and 0.99
 - e.g. $\Pr{\overline{X} e < \mu < \overline{X} + e} = 0.99$ Meaning the prob./confidence that the true mean μ lies within the interval $(\overline{X} - e, \overline{X} + e)$ is 0.99
- For a given confidence level, the shorter the interval $(\varepsilon_1 + \varepsilon_2/2\varepsilon)$, the more accurate the estimates!

Dr. Xing © Statistical Inference 17

Next Topics

• Stochastic Processes

Things to Do

• Project proposal

- Due February 23, Friday.

Dr. Xing© 18