ECE560: Computer Systems
Performance Evaluation

Lecture #9 —
Stochastic Processes
(PartI)

Instructor: Dr. Liudong Xing
Spring 2024

Administration Issues
Homework #2 solution posted

Homework #3
— Due: February 21, Wednesday

Project proposal (refer to Guidelines)
— Due: February 23, Friday

Lecture #8 (Statistical Inference)
— Self-study lecture
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Review of Lectures #5-7

In last three lectures, we reviewed

Probability

— Sample spaces & events

Axioms of probability

Field, o-field, and probability measure

Conditional probability, law of total
probability, Bayes” Formula

Independence (pair-wise, mutually)
Random Variable (r.v.)
— Basic concepts
— Discrete & continuous r.vs
¢ Concepts, parameters, examples
— Jointly distributed r.v.s
J Concepts, parameters, important functions

* Maximum property
Fy(y)=Fy(y)Fy,(Y)...Fy, (y) VyeR
® Minimum property

E () =1=(1=F (A= F, (Y)..(1-F, (y)) VyeR

Dr. Xing © Stochastic Processes I
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Topics

* Basic concepts of stochastic
processes

¢ Important stochastic processes
— Counting processes
— Poisson processes
— Birth-and-death processes
— Markov processes [ ecture #10

Chapter 4 in Allen’s book

Dr. Xing © Stochastic Processes I
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Stochastic Processes (1)
¢ Definition:

A family of r.v.’s {X(t) | teT} that is indexed

by a parameter t (such as time) is known as

a “stochastic process” (‘or chance/random
process)
— Index set T: the set of all possible values
of t

e Each element of T is referred to as a

parameter
— State space: the set of all possible values
assumed by r.v.’s X(t)

e Each of these values is called a state of
the SP

Dr. Xing © Stochastic Processes I

Stochastic Processes (2)

e (lassification
Index Set T

Discrete Continuous

Discrete | Discrete state Discrete state
State

1. Discrete parameter | 2. Continuous parameter

Space

Continuous

— Since parameter is usually referred to as
“time”, and discrete-state process is often
referred to as a “chain”,

1. Discrete time, stochastic chain

2. Continuous time, stochastic chain

3. Discrete time, continuous state process
4

Continuous time, continuous state process

Dr. Xing © Stochastic Processes I
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Example Stochastic Processes

* Number of commands received by a time-

sharing system during time interval (0, t1)
- {X(@),0<t<tl}
— Type?

* Number of students attending the nth

lecture
- {X,n=1,2,3,4,..}
— Type?

* Average time to run a batch job at a
computing center on the nth day of the
week.

— {X,n=1,2,3,4,...7}
— Type?

* The waiting time of an inquiry message

that arrives at time t, until processing is

begun
- {X(@®,t>=0}
— Type?
Dr. Xing © Stochastic Processes I

Stochastic Processes (3)

¢ Intuition behind the concept of a SP

Q,F,P
(@.F.P) . e N
I —
{ — / U/ L
A
N
\
t1
@ fixed @ varied
t fixed A real # th(a))za r.y.:
X, (w): Q>R
i -
X, (@))=a“sample A family of r.v’s
tvaried | path” or “realization” =SP
of process X@ @,
= a deterministic func.
of t
Dr. Xing © Stochastic Processes I 8
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Agenda

* Important stochastic processes
— Counting processes

— Poisson processes
— Birth-and-death processes
— Markov processes [ octure #10

Chapter 4 in Allen’s book

Dr. Xing © Stochastic Processes I

Important Stochastic Processes (1)

e Counting processes

— A counting process is referred to as a SP
representing the number of events of some
kind that have occurred (after time 0 but
before time t) by the time t:

{N(2),t 2 0} : Continuous parameter, discrete state

— Events can be:

 Arrival of an inquiry at the central processing

system of a computer
* A phone call to an airline reservation center

¢ The occurrence of a hw or sw failure in a

computer system
» Job arrivals to a file server

e ectc.

Dr. Xing © Stochastic Processes I 10
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Counting Processes (Cont’'d)

e Formal definition: A SP {N(¢),t >0}

constitutes a counting process
provided that
— N(0)=0
— N(t) assumes only non-negative integer
values
— s < timplies that N(s) < N(1)
— N(t) — N(s) is the number of events that

have occurred in the interval (s, ¢/ (after

but not later than ¢)

Dr. Xing © Stochastic Processes I 11

Agenda

— Poisson processes

— Birth-and-death processes

— Markov processes [ ocryre #10

Dr. Xing ©

Chapter 4 in Allen’s book

Stochastic Processes I
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o(h) notation

» Definition 4.1.2: a function f1s
o(h) (read “f is little —oh of h” and
written “f=o(h)”) if

: h :
hm& =0 or |im=— —=

h—0 h h—o h

* Any quantity having an order of

magnitude bigger than 4

Dr. Xing © Stochastic Processes I 13

Remarks on o(h)

» Used in algorithm complexity

evaluation in computer science
* The o(h) is actually w(h)
* The o(h) in computer science is:

— any quantity having an order of

magnitude smaller than h

. h
hm& =0

h—o0 h

But we use definition of o(h) in the textbook!

Dr. Xing © Stochastic Processes I 14
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o(h) notation (Cont’d)

— Properties of o(h)
 If fis o(h), g is o(h), then f+g is o(h)
» Iffis o(h), ¢ is a const., then cfis o(h)

* Any finite linear combination of functions, each

of which is o(h), is also, o(h), i.e., €;,C5,"""C,

are constants, f,, f,,-:- f, are n functions, each of

them is o(h), Then,

Zn‘,c,- i iso(h)
i=1

Dr. Xing © Stochastic Processes I 15

o(h) notation (Cont’d)

— Hands-on examples

« f(h)=h?
« f(h)=h
. f(h)=h",n>1

Dr. Xing ©

f(h)=sin(h)

f(h)=c, c is a non-zero constant

Stochastic Processes | 16
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o(h) notation (Cont’d)

— Application of o(h)

Suppose X is an Exp. r.v. with parameter A, its c.d.f.:

F,(h)=P{X<h=1-e™

What is the prob. that X is less than or equal to
t+h given that it is greater than t?

Dr. Xing © Stochastic Processes I 17

Poisson Processes

* Let {N().t20; be a Poisson process
with rate A>0, then
— It is a continuous parameter discrete
state SP

— It counts the # of occurrence of some
type of events

— It could also be interpreted as an arrival
of some entity at an average rate A

— For each N(t)=Y, it is a Poisson r.v.
describing the # of events occurring in
any time interval of length 7 (e.g., (0, t],
(s, stt]), and it has pmf of

P{Y =n} = P{N(t) = n}
:Pn(t):e'}"ﬂ,nzo,l 2.t
n!

E[Y] =E[N®©¥)] = At

Dr. Xing © Stochastic Processes I 18
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Poisson Processes (Cont’d)

Formal Definition
— A Poisson process with rate >0 is

a counting process {N(1),z2 0}

satisfying the following conditions:

1. N(0)=0

2. The process has independent Increments
(events occurring in non-overlapping
intervals are mutually independent)

3. The process has stationary increments
(The distribution of the # of events in
any interval of time depends only on the
length of the interval and not on the time
origin)

4. In any time interval of length /i, we can
have

P{N(h) =1} = Pr{exactly one event occurs} = A& + o(h)
P{N(h) =2} = Pr{more than one event occur} = o(/)
P{N(h) =0} = Pr{no event occurs} = 1—(Ah +o(h)) —o(h)
=1-Ah+o(h)
Dr. Xing © Stochastic Processes 1 19

Poisson Processes (Cont’d)

e Remarks

— Let {N(),t>0} be a Poisson process with rate
A>0, and let 0<¢# <7, <-:- be successive
occurrence times of events, and let the inter-
arrival time (i.e. the time between the
occurrence of 2 consecutive events) be defined
by 7, =4,7, =t, -1, then inter-arrival times {r,}
are mutually indep. identically distributed
exp. r.v.’s, each with mean 1/A (Theorem 4.2.2)

— Let{N(#),t 20} be a counting process s.t. the
inter-arrival times of events {z,} are indep.
identically distributed exp. r.v.’s, each with
avg. value 1/A, then {N(),t 20} is a Poisson
process with rate A (Theorem 4.2.3)

]

# of arrivals ~ Poisson = inter-arrival time ~ Exp.

Dr. Xing © Stochastic Processes I 20
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Superposition Property

* Superposition of independent
Poisson processes

— If two Poisson streams are
merged, the result is a Poisson
stream with the rate equal to the
sum of the input rates

WO 20— N(0)+ N,(0)
{N,(0), 120} with 2, + 4,

— In general, the superposition of n
indep. Poisson processes w/
respective rates 4, 4,,---4,is also a
Poisson process with rate 4= Z{ 4

n 4 \ pooled Poisson
indep. Y stream with rate

Poisson ’ p
processes 1 A= Z A
i=1

n

(based on the proposition that the sum of n indep. Poisson
r.v.’s is still a Poisson r.v.)
Dr. Xing © Stochastic Processes I 21

Decomposition Property

* Decomposition of a Poisson process

— If a Poisson streams is divided into 2 streams,
w/ each event going to stream A w/ prob. P, and
stream B w/ prob. P , the resulting streams are

Poisson with rates p,, 1p, respectively

P/r X‘P A
A —@__
by AP,
— In general,
AP

/PI
Poisson stream . P, n Poisson

with rate ] \ AP, | streams

A Poisson process w/ rate A branches out into z output paths

Dr. Xing © Stochastic Processes I 22
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Hands-on Problems

A computer center has a large number of
separate system components that may fail
(terminals, tape drives, disks, printers, sensors,
CPUgs, etc.), without bringing the entire system
down.

There are, on the average, 0.6 failures per day.
Failures can be represented by a Poisson
process with rate A = 0.6 (per day). The time
between failures is observed to be
exponentially distributed.

Answer the following questions:

e What is the mean time between failures?

¢ The number of failures in a “t”-day interval(Y,)
has the Poisson distribution with a mean of
M=0.6t. What is the probability of exactly one
failure in a 24-hour period?

Dr. Xing © Stochastic Processes I 23

Hands-on Problems (Cont’d)

What is the probability of less than 5 failures in
a week?

Starting from a random point in time, what is
the probability that no failure will occur
during the next 24 hours?

Suppose exactly 24 hours has elapsed with no
failures. What is the expected time until the
next failure?

Four out of every five failures is a terminal
problem, with equal probability on each
failure. What is the process describing the
terminal failure?

What is the mean time between terminal
failures?

What is the probability of k terminal failures in
a t-day interval?

Dr. Xing © Stochastic Processes I 24
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Agenda

— Birth-and-death processes

— Markov processes [ ocrure #10

Chapter 4 in Allen’s book

Dr. Xing © Stochastic Processes I
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Birth-and-Death Processes: Definition

Let {X(¢),t >0} be a continuous parameter stochastic
process with discrete state space 0, 1, 2, .....
X(t) =n, n=0, 1, 2,... means that

— The system has a population of 7 elements/customers at
time ¢

— The system is in state £, € {0,1,2,...} attime ¢
There exist nonnegative birth and death rates:

(4,,n=012,.} (1,,n=012,.}

State changes are only in increments of + 1 and the
value of E_ is never negative.

E =E  iftn>0 or E =FE ,ifnx1

If the system is in state E_ at time t, the probability of a
transition to E__, during the interval (t, t+th] is 4 A +
o(h),andto E _,is uh+o(h)

The probability of more than 1 transition during an
interval of length of h is o(%).

Then, {X(9).,220} ig a birth-and-death process.

Dr. Xing © Stochastic Processes I 26
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Birth-and-Death Processes

+ State-transition diagram

+ Differential-difference equations for

PLX(1)=n]=P, (1):

D 4 )P0+ 2P (O Py 0, 121
B o0+ R0

Initial condition

F(0)=1, P,(0)=0, j#i (system is initially in state Ei)

— Solving the above infinite set of differential-
difference equations w/ the initial conditions,

can give you the solution for P,(?) for all n, all .

Remarks:

* But analytically the time-dependent solutions
are very difficult to obtain, except for some

very special cases — pure-birth process

* People uses “steady-steady solutions”

Dr. Xing © Stochastic Processes I 27

Special Case: Pure-Birth Processes

* Any Birth-and-Death process for which all

death rates #.are 0 is called a ~
— Example: for the pure- birth process with

{z" =2>0,1,=0
initial conditions : p,(0)=1, p;(0)=0, j>0
We have the following set of equations:

LA —AP (t)+ AP, (), n>1

95O _ _ap )

The solution of the set of equations satisfying the
given initial condition is:

Pn(t)ze‘”(’l%, n>0, t>0
n:

A Poisson process is a pure-birth

process with a constant birth rate

Dr. Xing © Stochastic Processes I 28
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Steady-State Solutions

* In general, finding the time-dep. solutions
is very difficult. However,

— If limP.(Y="P. for each n, then the system is

>0

in statistical equilibrium/stationary/in the

steady-state!

— A steady-state (Equilibrium) solution exists:
* Can be obtained by taking limits as { — co on
both side of time-dep. equations and using the
fact that
lim».(0=rp,

5 dp.(1)
lim—;,—=0

i vn=0, 1, 2---
e dl

» That is, we obtain a set of difference equations:

0 = _(/In + /un )Pn + j“nfll)nfl + Iun+1Pn+1’
OZ_X’OPO +1Ll]I,l 1

A B+ 1,0 B = (4, +1,)B, (1)
wR =3P @

n>1

-- Called “Balance Equations”

Dr. Xing © Stochastic Processes I 29

Steady-State Solutions (continued)

— Balance equations: when a system reaches

equilibrium, for each state En, we have

Rate of entering En = Rate of leaving En

— Also, ipn =1 3
n=0
— Now it should be easy for us to derive the

steady state solutions by using (1) to (3),
’ Ao A,

P=" Dy Py =P = p,
1 2 Hy Ky
= 21171211—2 a ﬁ"lﬂ’o o n> 1
Moy Ho

— Substitute them into (3),

H@+%+AAMM+A#“ma%}J

Moy K Mooy Byl
), =
pn =
Dr. Xing © Stochastic Processes I 30
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Birth-and-Death Processes: An
Example

* Consider a queuing system with one
server and no waiting line. And
assume

— Poisson arrivals with rate A
— Exponential service with rate p
The state transition diagram is:

A

Find Po, P.?

Dr. Xing © Stochastic Processes I 31

Next Topics

¢ Stochastic Processes (Cont’d)

— Markov processes

Things to Do

e Read Allen’s Ch. 4

* Project proposal
— Due Friday, February 23

Dr. Xing © Stochastic Processes I
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