

Administration Issues

 (3/27/2024)- Homework \#5 assigned
- Due April 1, Monday
- Project final report
- Due: April 19, Friday
- Refer to Report Guidelines

Review (L\#11, 13)

- Birth-and-death queueing systems
- Fit the birth-and-death process
- A customer arrival is a birth
- A customer departure after completing service is a death
- Both arrival process and service times are memoryless!
- M/M/ Queues
- M/M/1 Queues
- M/M/1/N Queues
- M/M/c Queues
- M/M/ ∞ Queues
- M/M/1/k/k Queues
- Solution
- Balance equations
- Little's Law

Agenda

- Embedded Markov Chain Queueing Systems
- M/G/1,
- M/D/1,
- GI/M/1
- Priority Queueing Systems

Embedded Markov Chain

 Queueing Systems- More general arrival process or

M/G/1 Queueing Systems

- Assume
- Poisson arrival process with rate λ
- General service time distribution with
- M/G/1,
- M/D/1,
- GI/M/1
- different customers have independent service times
- $\mathrm{E}[\mathrm{s}]$ and $\mathrm{E}\left[\mathrm{s}^{2}\right]$ exist (in order to calculate L,W)
- Solution (see extra notes posted for detailed derivations):
- Constructing an embedded Markov chain
- And applying z-transform and LaplaceStieltjes transform methods

Steady-State State Probability

- Steady-state probability distribution:

$$
\left\{\begin{array}{l}
\pi_{0}=1-\rho \\
\pi_{i}=\pi_{0} k_{i}+\sum_{j=1}^{i+1} \pi_{j} k_{i-j+1}
\end{array}\right.
$$

where $k_{n}=\operatorname{Pr}[n$ customers arrive during one service interval]

$$
k_{n}=\int_{0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} d W_{s}(t), \quad n=0,1,2, \ldots
$$

- It can be shown (by Klienrock) that for M/G/1 systems:

$$
\pi_{i}=p_{i}=r_{i}
$$

L for M/G/1 Systems

$$
\begin{aligned}
& \mathrm{L}=\rho+\frac{\rho^{2}\left(1+C_{s}^{2}\right)}{2(1-\rho)} \\
& \text { where } C_{s}=\frac{\sqrt{\operatorname{Var}[s]}}{E[s]} \text { is C.O.V. }
\end{aligned}
$$

C.O.V: Coefficient of Variation
-- the Pollaczek-Khintchine formula

Note: for the exponential service time distribution: $\mathrm{C}_{\mathrm{s}}=1$, then

$$
\mathrm{L}=\rho+\frac{\rho^{2}(1+1)}{2(1-\rho)}=\rho+\frac{\rho^{2}}{1-\rho}=\frac{\rho}{1-\rho}
$$

which is the same as in $\mathrm{M} / \mathrm{M} / 1$!

$$
\text { Find } \mathrm{W}, \mathrm{~L}_{\mathrm{q}}, \mathrm{~W}_{\mathrm{q}}
$$

- W (average response time):

By Little's Law:

$$
\mathrm{W}=\mathrm{L} / \lambda=\frac{\rho+\frac{\rho^{2}\left(1+C_{s}^{2}\right)}{2(1-\rho)}}{\lambda}
$$

- L_{q} (average queue length):

$$
\begin{aligned}
L_{q} & =L-(1 * P[\text { Server is not empty }] \\
& =L-(1-P[0 \text { customer in the system }]) \\
& =L-\left(1-\pi_{0}\right)=L-(1-(1-\rho)) \\
& =L-\rho=\frac{\rho^{2}\left(1+C_{s}^{2}\right)}{2(1-\rho)}
\end{aligned}
$$

- W_{q} (average waiting time):

$$
\mathrm{W}_{\mathrm{q}}=\mathrm{L}_{\mathrm{q}} / \lambda=\frac{\rho^{2}\left(1+C_{s}^{2}\right)}{2(1-\rho) \lambda}=\frac{\rho W_{s}\left(1+C_{s}^{2}\right)}{2(1-\rho)}
$$

M/D/1 Queueing Systems

- Assume
- Poisson arrival process with rate λ
- Deterministic service rate μ
- Constant service time $s=W_{s}=1 / \mu$
- A special case of M/G/1 with $\operatorname{Var}[\mathrm{s}]$ $=0, \mathrm{E}[\mathrm{s}]=\mathrm{W}_{\mathrm{s}} \rightarrow \mathrm{C} . \mathrm{O} . \mathrm{V}$.

$$
C_{s}=\frac{\sqrt{\operatorname{Var}[s]}}{E[s]}=0
$$

M/D/1 Queueing Systems
 (cont'd)

- Performance measures
$\mathrm{L}=\rho+\frac{\rho^{2}\left(1+C_{s}^{2}\right)}{2(1-\rho)}=\rho+\frac{\rho^{2}}{2(1-\rho)}=\frac{\rho(2-\rho)}{2(1-\rho)}$
$W=L / \lambda=\frac{\rho(2-\rho)}{2(1-\rho) \lambda}=\frac{W_{s}(2-\rho)}{2(1-\rho)}$
$L_{q}=\frac{\rho^{2}\left(1+C_{s}^{2}\right)}{2(1-\rho)}=\frac{\rho^{2}}{2(1-\rho)}$
$W_{q}=L_{q} / \lambda=\frac{\rho^{2}}{2(1-\rho) \lambda}=\frac{\rho W_{s}}{2(1-\rho)}$

Agenda

- Embedded Markov Chain Queueing Systems
- M/G/1,
- M/D/1,
- GI/M/1
- Priority Queueing Systems

GI/M/1 Queueing Systems

- Assume
- Renewal arrival process
- The inter-arrival times are i.i.d. r.v.s
- Exponential service time with a mean of $1 / \mu$
- μ is the average service rate

GI/M/1

- A Poisson process can be characterized as a counting process for which the inter-arrival times (times between successive events) are
i.i.d, exponential r.v.s
- A renewal process is a generalization of the Poisson process
- A counting process for which the interarrival times (times between successive events) are i.i.d r.v.s

Steady-State Probabilities

- π_{n} : the steady-state probability that an arriving customer finds n customers in the system, for $\mathrm{n}=0,1,2, \ldots$
- Laplace-Stieltjes Transform (LST) of a random variable X :

$$
\begin{gathered}
A^{*}(\theta)=L_{X}[\theta]=E\left[e^{-\theta X}\right]= \\
\begin{cases}\sum_{x_{i}} e^{-\theta x_{i}} p\left(x_{i}\right) & \text { if } X \text { is discrete } \\
\int_{0}^{\infty} e^{-\theta x} f(x) d x & \text { if } X \text { is continuous }\end{cases}
\end{gathered}
$$

$$
\pi_{\mathrm{n}} \text { for } \mathrm{GI} / \mathrm{M} / 1
$$

- Wolff showed that
$-\pi_{0}$ is the unique solution of equation

$$
1-\pi_{0}=A^{*}\left[\mu \pi_{0}\right]
$$

such that $0<\pi_{n}<1$, where $A^{*}[\theta]$ is the LST of the inter-arrival time τ

- General expression of π_{n} in terms of π_{0} :

$$
\pi_{n}=\pi_{0}\left(1-\pi_{0}\right)^{n}, n=0,1,2, \ldots
$$

A geometric distribution (L\#6) with $\mathrm{q}=1-\pi_{0}, \mathrm{p}=\pi_{0}$, thus,

$$
E[X]=\frac{q}{p}=\frac{1-\pi_{0}}{\pi_{0}}, \operatorname{Var}[X]=\frac{q}{p^{2}}=\frac{1-\pi_{0}}{\pi_{0}^{2}}
$$

Dr. Xing ©
GI/M/1

Example

Consider the M/M/1 queueing system

- First, find $\mathrm{A}^{*}[\theta]$:
- the inter-arrival time τ is exponentially distributed with rate λ, that is,

$$
\begin{gathered}
\operatorname{Pr}[\tau \leq t]=1-e^{-\lambda t} \\
p d f: f(x)= \begin{cases}\lambda e^{-\lambda x} & x>0 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

- Second, find π_{0}

$$
1-\pi_{0}=A^{*}\left[\mu \pi_{0}\right]
$$

- Third, find π_{n}

$$
\pi_{n}=\pi_{0}\left(1-\pi_{0}\right)^{n}
$$

Dr. Xing ©
GI/M/1

p_{n} for $\mathrm{GI} / \mathrm{M} / 1$

- Distinction between
$-\pi_{\mathrm{n}}$: the steady-state probability that an arriving customer finds n customers in the system
- From "an arriving customer" point of view
$-\mathrm{p}_{\mathrm{n}}$: the steady-state probability that there are n customers in the system
- From "a random observer" point of view

An Illustrating Example $\left(\pi_{\mathrm{n}} v s \mathrm{P}_{\mathrm{n}}\right)$

- $\mathrm{A} \mathrm{D} / \mathrm{D} / 1$ with $\mathrm{E}[\tau]=10 \mathrm{~min}, \mathrm{~W}_{\mathrm{s}}=5$ $\min \rightarrow \rho=1 / 2$
$-\mathrm{E}[\tau]>\mathrm{W}_{\mathrm{s}} \rightarrow$ an arriving customer never sees another customer, hence

$$
\pi_{0}=1, \pi_{n}=0 \text { for } n \geq 1
$$

$-\rho=1 / 2 \rightarrow$ the server is busy half of the time, i.e., the system contains one customer half the time and is empty half the time as observed by an outside observer, hence

$$
p_{0}=0.5, p_{1}=0.5, p_{n}=0 \text { for } n \geq 2
$$

$\pi_{\mathrm{n}}=\mathrm{p}_{\mathrm{n}}$ iff the arrival process is Poisson (shown by Wolff)

GI/M/1 (Cont'd)

- p_{n} ?
- Kleinrock showed that for $\mathrm{GI} / \mathrm{M} / 1$:

$$
\begin{aligned}
& p_{0}=1-\rho \\
& p_{n}=\rho \pi_{0}\left(1-\pi_{0}\right)^{n-1}, n=1,2, \ldots
\end{aligned}
$$

Dr. Xing ©
GI/M/1

GI/M/1 (Cont'd)

- Find $\mathrm{L}, \mathrm{W}, \mathrm{L}_{\mathrm{q}}, \mathrm{W}_{\mathrm{q}}$?

$$
\begin{aligned}
& L=\sum_{n=0}^{\infty} n p_{n}=\rho \pi_{0} \sum_{n=0}^{\infty} n\left(1-\pi_{0}\right)^{n-1} \\
& =\rho \pi_{0}\left(\sum_{n=0}^{\infty}\left(1-\pi_{0}\right)^{n}\right)^{\prime}=\rho \pi_{0} \frac{1}{\pi_{0}^{2}}=\frac{\rho}{\pi_{0}} \\
& \begin{aligned}
L_{q} & =L-(1 * P[\text { Server is not empty }] \\
& =L-(1-P[0 \text { customer in the system }]) \\
& =L-\left(1-p_{0}\right)=L-(1-(1-\rho)) \\
& =L-\rho=\frac{\rho}{\pi_{0}}-\rho=\frac{\rho\left(1-\pi_{0}\right)}{\pi_{0}} \\
W & =L / \lambda=\frac{\rho}{\pi_{0}} / \lambda=\frac{W_{s}}{\pi_{0}} \\
W_{q} & =L_{q} / \lambda=\frac{\left(1-\pi_{0}\right) W_{s}}{\pi_{0}}
\end{aligned}
\end{aligned}
$$

GI/M/1

Hands-On Problem

Considering a computer subsystem that can be modeled as the GI/M/1 queueing system. Specifically, the service time is exponentially distributed with a constant rate of 60 jobs per second. The LaplaceStieltjes transform of the job inter-arrival time τ is assumed to be $A^{*}[\theta]=\frac{\theta+\lambda}{3 \lambda}$ with $\lambda=$ 30.

- What is the probability that an arriving job finds the system is busy?
- What is the probability that an arriving job finds 3 customers in the system?
- What is the average number of jobs in the system queue?
- What is the average time a job spends in the system?

Dr. Xing ©
GI/M/1

Agenda

- Embedded Markov Chain Queueing Systems
- M/G/1,
- M/D/1,
- GI/M/1
- Priority Queueing Systems

Kendall Notation (review)

Standard notation for queueing systems:

$\mathrm{A} / \mathrm{B} / \mathrm{c} / \mathrm{K} / \mathrm{m} / \mathrm{Z}$

- A: arrival process or inter-arrival time distribution
- 'M' = Poisson arrival process
- 'D' = Deterministic (constant) arrival rate
- 'G' = General arrival process
- B: service process or service time dist.
- 'M' = Exponential service time dist.
- 'D' = Deterministic (constant) service time
- 'G' = General service time
- c: number of servers
- \mathbb{K} : the capacity of the system (queue+server(s)) (default: ∞)
- m: total job/customer population (default: ∞)
- \underline{Z} : scheduling discipline (default: FIFO)

Dr. Xing ©
GI/M/1

Priority Queueing Systems

Priority Queueing Systems

- Before we focused on non-priority queueing systems: FCFS/FIFO
- Concepts
- Two control policies
- Results on M/G/1, M/M/c
- Priority queueing systems: queueing systems in which some customers get preferential treatment
- Customers divided into priority classes, numbered from 1 to n
- The lower the priority class number, the higher the priority
- Customers within a class served by FCFS

Assumption

- All queue schedule disciplines are work conserving
- Customers do not leave without completing service
- The server is never idle if there are customers present requiring service

GI/M/1

Control Policies

- Control policies to resolve the situation wherein a customer of class i arrives to find a customer of class j in service $(i<j)$
- Non-preemptive
- The newly arrived customer always waits until the customer in service completes service before gaining access to the service facility \rightarrow a head-of-the-line (HOL) system
- Preemptive

Dr. Xing ©
GI/M/1

Control Policies (Cont'd)

- Preemptive
- service of the customer of class j is interrupted, and the newly arrived customer of higher priority begins service
- The interrupted customer returns to the head of the j th class
- The interrupted customer resumes the service at the point of interruption -preemptive-resume, or
- The interrupted customer repeats the entire service from the beginning --preemptive-repeat

M/G/1 Priority Q Systems

- Consider an M/G/1 queueing system with any queue discipline that chooses customers by an algorithm that does not consider customer service times or any measure of them. Then the performance measures L, W, Lq, Wq will be the same as for the FCFS queue discipline (shown by Kleinrock)

$$
\begin{aligned}
& \mathrm{L}=\rho+\frac{\rho^{2}\left(1+C_{s}^{2}\right)}{2(1-\rho)}, \text { where } C_{s}=\frac{\sqrt{\operatorname{Var}[s]}}{E[s]} \\
& \mathrm{W}=\mathrm{L} / \lambda=W_{s}+\frac{\rho W_{s}\left(1+C_{s}^{2}\right)}{2(1-\rho)} \\
& L_{q}=L-\rho=\frac{\rho^{2}\left(1+C_{s}^{2}\right)}{2(1-\rho)} \\
& \mathrm{W}_{\mathrm{q}}=\mathrm{L}_{\mathrm{q}} / \lambda=\frac{\rho^{2}\left(1+C_{s}^{2}\right)}{2(1-\rho) \lambda}=\frac{\rho W_{s}\left(1+C_{s}^{2}\right)}{2(1-\rho)}
\end{aligned}
$$

Dr. Xing ©

M/M/c Priority Q Systems

- Also called multi-server priority systems

Next Topic

- Consider M/M/c non-preemptive systems with n priority classes
- Queueing Networks
- The customers arrival to class i is Poisson with rate λ_{i}. Then the overall arrival pattern is Poisson with mean (superposition property)

$$
\lambda=\lambda_{1}+\lambda_{2}+\ldots \lambda_{n}
$$

- Each customer has the same exponential service time requirement with a mean of $1 / \mu$
- Cobham showed that

$$
\begin{aligned}
& \rho=\frac{\lambda}{\mu c}=\frac{\lambda W_{s}}{c} \\
& E\left[q_{1}\right]=\frac{C[c, \alpha] W_{s}}{c\left(1-\lambda_{1} W_{s} / c\right)}
\end{aligned}
$$

$$
\text { Ref.(M/M/c with FCFS in L\#13): } W_{q}=E[q]=C[c, \alpha] W_{s} / c(1-\rho)
$$

$$
\left.E\left[q_{i}\right]=\frac{C[c, \alpha] W_{s}}{c\left[1-\left(W_{s} \sum_{j=1}^{i-1} \lambda_{j}\right) / c\right.} /{ }_{c}\left(W_{s} \sum_{j=1}^{i} \lambda_{j}\right) / c\right], j=2, \ldots, n
$$

