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ECE560: Computer Systems 
Performance Evaluation

Lecture #15: 
Queueing Networks  

Instructor: Dr. Liudong Xing

Administration Issues
(4/1/2024)  

• Homework #5 due Today

• Homework #6 assigned  

– Due April 8, Monday

• Project final report

– Due: April 19, Friday 

– Refer to Report Guidelines

• Today’s topics

– Finish L#14 (Priority Q Systems)

– Then L#15 (Q Networks)
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Review of Queueing Systems

• Birth-and-death queueing systems
(Lecture #11, 13)
– Fit the birth-and-death process
– M/M/ Queues: M/M/1, M/M/1/N, M/M/c, 

M/M/ , M/M/1/k/k
– Solution: Balance equations

• Embedded Markov-chain queueing 
systems (Lecture #14)
– More general arrival process or service times 

are allowed: M/G/1, M/D/1, GI/M/1
– Solution

• constructing an embedded Markov chain
• And applying Z-transform and Laplace-

Stieltjes transform methods
– πn = pn iff the arrival process is Poisson 

• πn: from “an arriving customer” point of view
• pn: from “a random observer” point of view

• Priority queueing systems (Lecture #14)
– Some customers get preferential treatment
– M/G/1, M/M/c

Dr. Xing QN(I) 4

Topic

• Concepts and notations
• Product-form queueing 

networks
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Queueing Networks (QN)

• In general, a model in which jobs departing 
from one queue arrive at another queue 
(possibly the same queue) is called a QN 
– M/M/1/K/K is actually a QN

• A QN is a collection of simple queueing 
systems interconnected by directed links 
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Classification of QN

• In terms of whether or not the QN 
accepts customers from outside the 
system
– Open QN, 
– Closed QN, 
– Mixed QN
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Open QN
• Customers enter from outside the 

system, circulating among the 
service centers for service, and 
depart from the system

• Having external arrivals and 
departures

• Number of customers/jobs in the 
system varies with time

• Usually assuming the throughput γ 
is known (to be equal to the arrival 
rate), the goal is to characterize the 
distribution of number of jobs in 
the system

New customers enter and 
Old customers eventually leave
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Closed QN
• A fixed number of customers circulate 

indefinitely among the service centers
• Having no external arrivals or departures

• Total number of customers/jobs in the 
system stays constant; a fixed number of 
customers contend for resources

• Usually assuming the number of jobs is 
given, the goal is to determine the 
throughput (i.e., the job completion rate)

Out link

In link
Example II

Example I:
M/M/1/k/k 
(Machine repair 
model)
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Mixed QN
• Open for some customers: who enter from 

the outside the system and eventually leave 
• Closed for others: who always remain 

inside the system

With more than one class/type of customers --
multi-class systems

Customers within a class are indistinguishable 
(have the same service demand) 
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Notations
• K: the number of service centers in a 

QN
• C: number of customer classes
• Sck: average service time per visit that 

the service center k provides for 
customers of class c
– A customer may visit a service center 

several times to complete the service
• Vck: average number of visits that a 

customer of class c makes to service 
center k

• Thus, the total service demand for 
customers of class c at service center k:    

Dck = Vck * Sck

• Thus, the total service demand at 
service center k:

 c ckk DD
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Notations (Cont’d)

• γ: the average throughput of the system
(Recall: γ is the rate at which jobs 
successfully depart from the system)
– For open QN

• number of jobs leaving the system per unit 
time defines γ 

– For closed QN (no jobs actually leaves the 
system)
• Traversing the outside link (the link 
connecting Out to In) is equivalent to leaving 
the system and immediately reentering it

• γ is defined as the number of jobs traversing 
this link per unit time.

• γck: the average throughput of class c at the 
service center k

Out link

In link
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Forced Flow Law
• It’s shown that:

– For a single-class system:

– Called “the forced flow law” 
• Showing that the throughput of any service center 

determines the throughput of all the others
• Relating the system throughput to individual device 

throughputs

ck

ck

V
 

kk
k

k V
V

  or      

• Example:
The measurements that a performance analyst made on 
his main batch processing systems show that the 
average number of visits each job makes to Drive 1 is 
5; and that the disk throughput for Drive 1 is 10 
requests per second. Find the system throughput γ.
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The Bottleneck 

• Saturated device
– a device (server) with a utilization of 

100%

• A system is saturated when at least 
one of its servers or resources is 
saturated

• The bottleneck of the system
– The first device (server) to saturate as 

the load on the system is increased

• Identification based on service 
demand Dk, k=1,2, …, K: 

The bottleneck is device j if
},...,max{ 1max Kj DDDD 

The device with the highest service demand
has the highest utilization and 
is the bottleneck device.
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The Bottleneck (Cont’d) 

• The bottleneck is workload 
dependent
– Different workloads may have different 

bottlenecks for the same computer 
systems

• Scientific computing jobs tend to be CPU 
bound

• Business-oriented jobs (E-mail, DBMS) tend 
to be I/O bound

– The workload on computer systems 
usually varies during different period of 
the day, so do the bottleneck

– Most interested in the bottleneck during 
the peak period of the day
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The Bottleneck (Cont’d) 

• Example
A performance analyst measures a 
small batch processing computer 
system. He finds that the CPU 
(numbered by 1) has a visit ratio of 20 
(i.e., V1=20) with S1=0.05 sec, the first 
I/O device has V2=11 with S2=0.08 
sec, while the second I/O device has 
V3=8 with S3=0.04 sec. What is the 
bottleneck of the system, CPU, or the 
first I/O device or the second I/O?
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Topic

Concepts and notations
• Product-form queueing 

networks
– Concept
– Case studies
– Properties
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Product-Form QN

• In general, any QN in which the expression 
for joint equilibrium (steady-state) 
probability has the form of 

– π(n1,n2,…,nK): probability of n1 customers in 
center 1, n2 customers in center 2, …, nK
customers in center K.

– K: total number of nodes in the QN
– ni: number of customers at the ith service 

facility
– fi(ni): some function of ni

– N: total number of jobs in the system
– G(N): a normalizing constant

• Also called separable QN

We focus on Product-Form QN!
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Case Studies

• Two open product-form QN
– A series of K M/M/1 queues
– Jackson QN

• A closed 3-stage product-form 
QN
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Case Study I: Open PF-QN

• Consider a series of K M/M/1 queues

• Jobs leaving a queue immediately join the 
next queue

• Each individual queue in the series can be 
analyzed independently
– Arrival rate: λ
– Service rate of the i-th server: μi

– Thus, 
utilization of the i-th server

probability of ni jobs in the i-th queue system 
(including queue and server): 

i
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Case Study I (Cont’d)

– The joint probability of K queues 
π(n1,n2,…,nK):
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It is a product-form QN.
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Case Studies (Agenda)

• Two open product-form QN
A series of K M/M/1 queues
– Jackson QN

• Jackson theorem and application
• 3-step Jackson algorithm
• An example

• A closed 3-stage product-form 
QN

Dr. Xing QN(I) 22

Case Study II: 
Jackson QN

• A Jackson QN contains K nodes 
satisfying 3 properties:
– Each node k consists of ck identical 

exponential servers, each with service 
rate μk

– Customers arriving at node k from 
outside the system arrive in a Poisson 
pattern with average arrival rate λk. 
Customers also arrive at node k from 
other nodes within the QN.

– Once served at node k, a customer 
immediately goes to  node j (j=1,…, K) 
with probability pkj; or leaves the QN 
with probability 





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Jackson’s Theorem 6.2.1
• The average arrival rate to each node k:

• Each node k behaves like an independent M/M/ck
queueing system with the average arrival rate Λk 
and average service rate μk for each of the ck servers

• The steady state probability that there are nk
customers in the k-th node for k=1,2,…, K:

given 

– is the steady-state probability that there 
are nk customers in the k-th node if treated as an 
M/M/ck with Λk and μk for each of the ck servers
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Jackson QN (Cont’d)

• The QN in the case study I is a Jackson 
QN 

• Application – M/M/1 queue with feedback
A message switching center represented by a 
M/M/1 queue transmits the message to the required 
destination. Assume the service (time to transmit a 
message and receive an ack of correct receipt) is 
exponential. Assume an error detecting code is 
used. The probability that a msg is received 
correctly is p; with probability q=1-p the msg must 
be retransmitted. Find ρ, L, W.
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Note on Jackson Networks

• There is only one job class in the 
network

• The overall number of jobs in the 
network is unlimited

• Each of the K nodes in the network 
can have arrivals from outside (λk)

• A job can leave the network from 
any node

• All service times and inter-arrival 
times are exponentially distributed

• The service discipline at all nodes is 
FCFS.

Dr. Xing QN(I) 26

Case Studies (Agenda)

• Two open product-form QN
A series of K M/M/1 queues
 Jackson QN

Jackson theorem and application
• 3-step Jackson algorithm
• An example

• A closed 3-stage product-form 
QN
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Jackson Networks Algorithm
• Based on Jackson Theorem

– Step 1: For all nodes,  i=1,…,K, compute the 
average arrival rates Λi of the network by 
solving the traffic equations:

– Step 2: Consider each node as an M/M/ck
queueing system. Check the stability (if ρk<1), 
and compute the marginal state probabilities 
πk(nk), and performance measures (L,W, Lq, 
Wq) of each node using the formulae for 
M/M/ck systems

– Step 3: Computer the (joint) steady-state 
probabilities of the overall queueing network.
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Hands-on Problem

• Number of nodes K=4
• Service times exponentially distributed 

with:

• Inter-arrival times exponentially 
distributed with λ4 = 4 jobs/sec

• Scheduling discipline: FCFS
• Transition probabilities (0 – source/sink):
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• Find the arrival rates to each node?

• Find the following performance measures:
– Utilization of each node (1-4)
– Mean number of jobs in each node
– Mean response times of each node
– Mean overall response time
– Mean waiting time in the queue of each 

node
– Mean queue length for each node
– Marginal steady-state probabilities: for 

example, find π1(3), π2(2), π3(4), π4(1)?

• Find the steady-state joint probabilities, for 
example, π(3,2,4,1)?

Hands-on Problem (Cont’d)

Dr. Xing QN(I) 30
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• Performance measures of the M/M/1 queue
 /

)1(  ,11 00 




 








 n

n

n










))1(1()1(   
system])  thein jobs0[-(1   

system]  thein jobs0[

0

P
P





















 














1)1(
)1()1(

)1(

2
1

1

0 0

n

n

n n

n
n

n

nnL













1/
1

/LW








 1

1
1

)1(
or    1

1
/

22








 sqqq WWWLW




















11
   

))1(1()1(   
system]) in the jobs0[-(1   

]emptynot  isServer [*1(

2
0

L

LL
PL

PLLq



ECE560

ECE560-QN 16

Dr. Xing QN(I) 31

Case Studies (Agenda)

• Two open product-form QN
A series of K M/M/1 queues
 Jackson QN

• Jackson theorem and application
• 3-step Jackson algorithm
• A computer system example

• A closed 3-stage product-form 
QN
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πk(nk), and performance measures 
(L,W, Lq, Wq) of each node 
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Review

• Closed QN 
– Having no external arrivals or 

departures
– A fixed number of customers circulate 

indefinitely among the service centers
– Total number of customers/jobs in the 

system stays constant; a fixed number 
of customers contend for resources
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Case Study III:
An Example Closed PF-QN

• Consider a closed 3-stage QN

– There are two customers
– Jobs leaving a queue immediately join the next 

queue
– Each queue in the network has exponential 

service time with a mean of 1/μi (i=1,2,3)
– Can be described as a Markov process with 

each state described as the triplet

– ni: number of customers in the queue system i
– The state transition diagram  (extra note)
– The steady-state solution:

• Balance equations
• Sum of all state probabilities equal 1 

2  where},,{
3

1
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Closed PF-QN (Cont’d)

• Balance equations:

• The sum of all state probabilities 
equal 1

State Rate out=Rate in
1: (2,0,0)
2: (1,1,0)
3: (1,0,1)
4: (0,2,0)
5: (0,1,1)
6: (0,0,2)

31 )1,0,1()0,0,2(  
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Closed PF-QN (Cont’d)

• Steady-state solution has the form of

– G: a normalization constant to ensure all 
probabilities sum to 1

• Expected # of customers in each stage:

• Expected time spent in each stage:
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Agenda

Concepts and notations
 Product-form queueing networks
Concept
Case studies

Open PF-QN
Closed PF-QN

– Important properties of product-
form QN

• Local balance
• M M property
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PF-QN Property (1) 

• Global balance vs. Local balance
– The equations: (rate in=rate out)

with the normalizing condition:
are called the

“Global Balance Equations”
– Global balance:

The transition rate out of a state of a QN = 
transition rate into this state of the QN 

– For so-called product-form QN exists 
also a local balance:

The transition rate out of a state of a QN 
due to a departure from node i = transition 
rate into this state of this QN due to an 
arrival to node i.

Dr. Xing QN(I) 38

Example

• Consider a closed QN with 3 nodes

– Number of customers m=2 
– Service time exponentially distributed with:

– Scheduling discipline: FCFS
– Transition probabilities:

– State space of the MC: 

where, state S=(n1,n2,n3): n1 jobs in node 1, n2 jobs 
in node 2 and n3 jobs in node 3

Find the steady-state probabilities ),,( 321 nnn

1,6.0,4.0 31211312  pppp
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State Transition Diagram

S1

S2S3 S4S5

S6

μ1p12

Dr. Xing QN(I) 40

Global Balance Equations

• State transition diagram
S1

S2S3 S4S5

S6

Rate Out = Rate In

μ1p12
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Local Balance Equations

• State (1,1,0)
– Node 2: transition rate out of state (1,1,0)

due to a departure from node 2 = 
transition rate into this state due to an 
arrival to node 2.

– Node 1

– By adding these local balance equations, (4`) 
and (4``), we get the global balance equation (4) 
for state (1,1,0).

• The equations (1), (2), (3) are already local 
balance equations!
– State (2,0,0), node 1  Eq. (1)
– State (0,2,0), node 2  Eq. (2)
– State (0,0,2), node 3  Eq. (3)
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Local Balance Equations (Cont’d)

• The equations (5) and (6) can be split to 
local balance equations similar to equation 
(4)

• (5`): state (1,0,1), node 1
• (5``): state (1,0,1), node 3
• (6`): state (0,1,1), node 2
• (6``): state (0,1,1), node 3
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Solution

• Steady state probabilities

• Normalizing condition leads to

• Resulted steady-state probabilities:

• From these joint steady-state probabilities, 
the marginal probabilities and performance 
measures (Li, Wi) can be calculated
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Hands-On Problem
• Consider a closed QN with 2 nodes

– Number of customers N=2 
– Service time exponentially distributed with:

– Scheduling discipline: FCFS
– Transition probabilities:

1. Draw the state transition diagram for this system
2. Find the global balance equations for each state
3. Find the local balance equations for each state
4. Find the joint steady-state probabilities for all

states
5. Find the mean number of customers in each

stage/node
6. Find the average time a customer spent in each

stage/node

1 2

sec/3      sec/4 21  

1      1 2112  pp
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Note!

• The local balance equations can be 
solved much easier than the global 
balance equations
– The rate at which jobs enter a single 

node of the QN is equal to the rate at 
which they leaves it

– Thus, local balance is concerned with a 
local situation and reduces the 
computational effort.

• The solution is still very complex for 
greater QN.
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Product Form and Local Balance

• Local balance yields a solution with the 
product-form property.

– The steady-state probability for the state (n1, n2, 
…, nK) is the product of the marginal 
probabilities                   for the single nodes

– The normalizing constant G can be obtained 
from the normalizing condition (sum of all 
steady-state probabilities equals 1)

– For QN with product-form solution, the local 
balance property holds.
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A necessary and sufficient condition for the 
existence of product form solutions is given 
in the local-balance property.
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PF-QN Property (2)

• MM property (Markov implies Markov)
– A node (service center) has the M M 

property iff the node transforms a Poisson 
arrival process into a Poisson departure process. 

• Muntz has shown that a QN has a product 
form solution if all nodes of the network 
have the M M property.

• If a node satisfies local balance, it must 
have M M property

LB

MMPF
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Next Topics

Things to Do

• Homework
• Class project 

• Petri Nets Modeling


