ECE560: Computer Systems
Performance Evaluation

Lecture #15:
Queueing Networks

Instructor: Dr. Liudong Xing

ECE560-QN

Administration Issues
(4/1/2024)

Homework #5 due Today
Homework #6 assigned

— Due April 8, Monday

Project final report
— Due: April 19, Friday
— Refer to Report Guidelines

Today’s topics
— Finish L#14 (Priority Q Systems)
— Then L#15 (Q Networks)
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Review of Queueing Systems

* Birth-and-death queueing systems
(Lecture #11, 13)
— Fit the birth-and-death process

— M/M/ Queues: M/M/1, M/M/1/N, M/M/c,
M/M/ o0, M/M/1/k/k

— Solution: Balance equations

* Embedded Markov-chain queueing
systems (Lecture #14)

— More general arrival process or service times
are allowed: M/G/1, M/D/1, GI/M/1
— Solution
* constructing an embedded Markov chain

* And applying Z-transform and Laplace-
Stieltjes transform methods

— m, = p, iff the arrival process is Poisson
e m,: from “an arriving customer” point of view
e p,: from “a random observer” point of view
* Priority queueing systems (Lecture #14)
— Some customers get preferential treatment
- M/G/1, M/M/c

Dr. Xing QN

Topic

 Concepts and notations

* Product-form queueing
networks

Dr. Xing QN()
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Queueing Networks (QN)

* A QN is a collection of simple queueing
systems interconnected by directed links

queue server Queue server

—_@—_1&—

* In general, a model in which jobs departing
from one queue arrive at another queue
(possibly the same queue) is called a QN

— M/M/1/K/K is actually a QN

queue

Dr. Xing QN(D) 5

Classification of QN

* In terms of whether or not the QN
accepts customers from outside the
system

— Open QN,
— Closed QN,
— Mixed QN

Dr. Xing

QN(D)
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Open QN

* Customers enter from outside the

system, circulating among the
service centers for service, and
depart from the system

Having external arrivals and
departures

|
|
|
| queue server queue server
I
|

New customers enter and
Old customers eventually leave

* Number of customers/jobs in the

system varies with time

Usually assuming the throughput y
is known (to be equal to the arrival
rate), the goal is to characterize the
distribution of number of jobs in

the system

Dr. Xing QN(D)

Example I:
M/M/1/k/k
(Machine repair
model)

Example 11

Closed QN

A fixed number of customers circulate
indefinitely among the service centers

Having no external arrivals or departures

Queue server queue server

In link C C

Out link

* Total number of customers/jobs in the

system stays constant; a fixed number of
customers contend for resources

* Usually assuming the number of jobs is

given, the goal is_to determine the
throughput (i.e., the job completion rate)

Dr. Xing QN()
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Mixed QN

* Open for some customers: who enter from
the outside the system and eventually leave

* Closed for others: who always remain
inside the system

Terminals

jobs

Central
Service ——

Batch jobs
- System

]
]

]

1

1

1

]

1

1

1 .
1 Interactive
i

]

]

]

]

]

1

1

]

1

1

With more than one class/type of customers --
multi-class systems

Customers within a class are indistinguishable
(have the same service demand)

Dr. Xing QN(D) 9
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Notations

K: the number of service centers in a
ON
C: number of customer classes

S.: average service time per visit that
the service center k provides for
customers of class ¢

— A customer may visit a service center
several times to complete the service
V..: average number of visits that a
customer of class ¢ makes to service
center k
Thus, the total service demand for

customers of class ¢ at service center k:

Dck = Vck * Sck

Thus, the total service demand at
service center k:

D, = Zc D,

Dr. Xing QN(D) 10
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Notations (Cont’d)

» y: the average throughput of the system
(Recall: y is the rate at which jobs
successfully depart from the system)

— For open QN

* number of jobs leaving the system per unit

time defines y
— For closed ON (no jobs actually leaves the
system)

¢ Traversing the outside link (the link
connecting Out to In) is equivalent to leaving
the system and immediately reentering it

* v is defined as the number of jobs traversing
this link per unit time.

) queue  server queue  server
In link
—_
Out link

* 7. the average throughput of class c at the

service center k

Dr. Xing QN(I) 11

Forced Flow Law

e [t’s shown that:

— }/ ck
4 Vck
— For a single-class system:
Yk
= —— or = yV
v v, V ok YV

— Called “the forced flow law”
» Showing that the throughput of any service center
determines the throughput of all the others
» Relating the system throughput to individual device
throughputs

» Example:

The measurements that a performance analyst made on
his main batch processing systems show that the
average number of visits each job makes to Drive 1 is
5; and that the disk throughput for Drive 1 is 10
requests per second. Find the system throughput y.

Dr. Xing QN(D) 12
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The Bottleneck

» Saturated device
— adevice (server) with a utilization of
100%
* A system is saturated when at least
one of its servers or resources 1S
saturated

» The bottleneck of the system

— The first device (server) to saturate as
the load on the system is increased

» Identification based on service
demand D, k=1,2, ..., K:
The bottleneck is device j if
D, =D, =max{D,,.., D}
The device with the highest service demand

has the highest utilization and
is the bottleneck device.

Dr. Xing QN
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The Bottleneck (Cont’d)

* The bottleneck is workload
dependent

— Different workloads may have different
bottlenecks for the same computer
systems

* Scientific computing jobs tend to be CPU
bound

* Business-oriented jobs (E-mail, DBMS) tend
to be I/O bound
— The workload on computer systems
usually varies during different period of
the day, so do the bottleneck

— Most interested in the bottleneck during
the peak period of the day

Dr. Xing QN(D) 14
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The Bottleneck (Cont’d -
( ) Topic
* Example v .
A performance analyst measures a Concepts and notations
small batch processing computer * Product-form queueing
system. He finds that the CPU networks
(numbered by 1) has a visit ratio of 20 _ Concept

(i.e., V1=20) with S1=0.05 sec, the first
I/O device has V2=11 with S2=0.08
sec, while the second I/O device has
V3=8 with S3=0.04 sec. What is the
bottleneck of the system, CPU, or the
first I/O device or the second 1/0?

— Case studies
— Properties

Dr. Xing QN(D) 15 Dr. Xing QN(D) 16
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Product-Form QN

* In general, any QN in which the expression
for joint equilibrium (steady-state)
probability has the form of

72'(1’11,7’[2,..., nK) = ;]ﬁ fi(”i)
G(N) L

— 7m(nyn,, ..., ng): probability of n, customers in
center 1, n, customers in center 2, ..., nx
customers in center K.

— K: total number of nodes in the QN

— n;: number of customers at the ith service
facility

— fin;): some function of n,

— N: total number of jobs in the system

— G(N): anormalizing constant

* Also called separable QN

We focus on Product-Form QN!

Dr. Xing QN(D) 17
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Case Studies

* Two open product-form QN
— A series of K M/M/1 queues
— Jackson QN

* A closed 3-stage product-form

QN

Dr. Xing QN(D) 18
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Case Study I: Open PF-QN

» Consider a series of K M/M/1 queues

queue server Qqueue server

TN E— - " @&—

+ Jobs leaving a queue immediately join the
next queue
» Each individual queue in the series can be
analyzed independently
— Arrival rate: A

— Service rate of the i-th server:

— Thus,
utilization of the i-th server
A
pi = —
H

probability of 7, jobs in the i-th queue system
(including queue and server):

”i(ni) = (1 - pi)pin'

Dr. Xing QN(D) 19
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Case Study I (Cont’d)

— The joint probability of K queues
T(n,n,,...,ng):

(N, ny,... )

=(1=p)p" x(1=py)py x..x (1= p ) py*
= 7,(m)7,(ny)... 70 (1)

It 1s a product-form QN.

1 K
—ml;l fi(n)

(R, My ey g )

Dr. Xing QN(D) 20
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Case Studies (Agenda)

» Two open product-form QN
v" A series of K M/M/1 queues

— Jackson QN

¢ Jackson theorem and application

* 3-step Jackson algorithm
* An example

* A closed 3-stage product-form

QN

Dr. Xing QN

21

Case Study II:
Jackson QN

* A Jackson QN contains K nodes
satisfying 3 properties:
— Each node & consists of ¢, identical

exponential servers, each with service
rate u;

— Customers arriving at node k£ from
outside the system arrive in a Poisson
pattern with average arrival rate 4,.
Customers also arrive at node & from
other nodes within the QN.

— Once served at node &, a customer
immediately goes to node j (j=1,..., K)
with probability p;;; or leaves the QN

with probability
K
-2 Py
j=1
Dr. Xing QN(D) 22
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Jackson’s Theorem 6.2.1

» The average arrival rate to each node :
K
Ay=2,+2 A,p,
j=1

» Each node k& behaves like an independent M/M/c,
queueing system with the average arrival rate 4,
and average service rate y, for each of the ¢, servers

The kth node in a Jackson network

» The steady state probability that there are n,
customers in the k-th node for &=1,2,..., K:

(1, Ry, ) = 70, (1,)70, (1, ). T (1)
given
Ay <,

- T (n k ) is the steady-state probability that there
are n, customers in the k-th node if treated as an
M/M/c; with 4, and z, for each of the ¢, servers

Dr. Xing QN(D) 23

Jackson QN (Cont’d)

* The QN in the case study I is a Jackson
QN

e Application — M/M/1 queue with feedback

A message switching center represented by a
M/M/1 queue transmits the message to the required
destination. Assume the service (time to transmit a
message and receive an ack of correct receipt) is
exponential. Assume an error detecting code is
used. The probability that a msg is received
correctly is p; with probability g=/-p the msg must
be retransmitted. Find p, L, .

Feedback
(retransmission)
g=1-p
Poisson A PYL LL
arrivals A A A e
l__. 1L -,
Dr. Xing QN(D) 24
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Note on Jackson Networks

There is only one job class in the
network

The overall number of jobs in the
network is unlimited

Each of the K nodes in the network
can have arrivals from outside (4,)

A job can leave the network from
any node

All service times and inter-arrival
times are exponentially distributed

The service discipline at all nodes is
FCFS.

Dr. Xing QN(D) 25

Dr. Xing

Case Studies (Agenda)

Two open product-form QN
v’ A series of K M/M/1 queues
v Jackson QN

v'Jackson theorem and application
» 3-step Jackson algorithm

¢ An example

A closed 3-stage product-form
QN

QN(D)

26
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Jackson Networks Algorithm

» Based on Jackson Theorem

— Step 1: For all nodes, i=1,...,K, compute the
average arrival rates A; of the network by
solving the traffic equations:

K
A,=2,+> A,p,

Jj=1

— Step 2: Consider each node as an M/M/c,
queueing system. Check the stability (if p;<1),
and compute the marginal state probabilities
m(ny), and performance measures (L,W, L,
W) of each node using the formulae for
M/M/c,, systems

— Step 3: Computer the (joint) steady-state
probabilities of the overall queueing network.

71y, 1. g ) = 75(m )70, (1, ). 72 (1)

Dr. Xing QN(D)

27
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Hands-on Problem

Source
L Printer
—

1/0-Device CPU II o Q
k

Disk Sink

e Number of nodes K=4

+ Service times exponentially distributed
with:
1wy =0.04, I/, = 0.03, 1y = 0.06, Ly = 0.05

* Inter-arrival times exponentially
distributed with 4, =4 jobs/sec

» Scheduling discipline: FCFS
» Transition probabilities (0 — source/sink):

p2=ma=05, pu=pn=1 pa=06 pyp=04

Dr. Xing QN() 28
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Hands-on Problem (Cont’d)

* Find the arrival rates to each node?

* Find the following performance measures:
— Utilization of each node (1-4)
— Mean number of jobs in each node
— Mean response times of each node
— Mean overall response time

— Mean waiting time in the queue of each
node

— Mean queue length for each node

— Marginal steady-state probabilities: for
example, find m,(3), ,(2), n5(4), m,y(1)?

* Find the steady-state joint probabilities, for
example, n(3,2,4,1)?

Dr. Xing QN(D) 29
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Reference

* Performance measures of the M/M/1 queue
a=p=1lu

y) Y )
Ty=1-—==1-p, ”n:(j 7y =p"(1-p)
7z )z

¥y = pP[> 0jobs in the system]
= u(1- P[0jobs in the system])
=pu(-m)=p(l-(1-p))=up =4
L=y nr,=01-p)Y np"
n=0 n=0
> aa_(A=p)p P
=(1-p) R
( pp;np (I-p) 1-p
w=ria=L ja=—1_
1-p u—A
L, = L—(1* P[Server is not empty]
=L —(1-P[0jobs in the system])
=L-(I-7)=L-(1-(1-p))

2
P P
:L—pzi—pzi
1-p 1-p
2 2
woerii=LYow-wow-—p _1_pP 1
e 1-p A 4 A-pA u 1-pA
Dr. Xing QN(D) 30
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Case Studies (Agenda)

* Two open product-form QN
v' A series of K M/M/1 queues
v Jackson QN

 Jackson theorem and application
* 3-step Jackson algorithm
* A computer system example

K
Ap=2,+D A,p,

j=1

m(n,), and performance measures
(L,W, L, W) of each node

71y, 1. 3 ) = ()75 (1, ). 7 (1)

* A closed 3-stage product-form

ON

Dr. Xing QN

31
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Review

* Closed QN

— Having no external arrivals or
departures

— A fixed number of customers circulate
indefinitely among the service centers

— Total number of customers/jobs in the

system stays constant; a fixed number
of customers contend for resources

Dr. Xing QN()
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Case Study III:
An Example Closed PF-QN

Consider a closed 3-stage QN

L Ie—=Ne—=Ie-

Stage 1 Stage 2 Stage 3

— There are two customers

Jobs leaving a queue immediately join the next
queue

Each queue in the network has exponential
service time with a mean of 1/, (i=1,2,3)

Can be described as a Markov process with
each state described as the triplet

3
S ={n,,n,,n,} where Z n, =2
i=1

n;: number of customers in the queue system i
The state transition diagram (extra note)
The steady-state solution:

» Balance equations

* Sum of all state probabilities equal 1

Dr. Xing QN(D) 33

Closed PF-QN (Cont’d)

» Balance equations:

State Rate out=Rate in

1:(2,0,0) 7(2,0,0) 14, = 7(1,0,1) 115

2:(1,1,0) 7(L1L0) g + 1) = 7(2,0,0) 4, + 7£(0,1,1) 115
3:(1,0,1) 7(1L,0D) (g + 1) = 7(1,1,0) g, + 7£(0,0,2) g2,
4:(0,2,0) 7(0,2,0) 11, = 7(1,1,0) g,

5:(0,1,1) 70,1 (g, + 1) = 7(0,2,0) 20, + 7£(1,0,1) g4,
6: (0,0,2) 7(0,0,2) 12, = 7(0,1,1) 11,

ECE560-QN

» The sum of all state probabilities
equal 1

in(s,.):l

Dr. Xing QN(D) 34
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Closed PF-QN (Cont’d)

» Steady-state solution has the form of
w(ny,ny,ny) =G/ p1)" (1/ )" (1/ p3)"

— G: anormalization constant to ensure all
probabilities sum to 1
G- 1

> 2 i, j,k)

2
i=0 j=0 k=0

» Expected # of customers in each stage:

Li:E[N[]:ZjP[Ni =J]

J=0

Marginal probability : P[N, = j]= ZZﬂ'( J,k,m)
m k

* Expected time spent in each stage:

A, = u, Priserver 3is busy} = 4, (1 - P[N, =0])
A, = w, Pr{server lis busy} = (1 - P[N, = 0])

A, = 1, Pr{server 2 is busy} = 1,(1- P[N, =0])
W,=L/2

Dr. Xing QN(D) 35
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Agenda

v" Concepts and notations

v’ Product-form queueing networks
v Concept
v’ Case studies
v Open PF-QN
v Closed PF-QN

— Important properties of product-
form QN

* Local balance

* M > M property

Dr. Xing QN()
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PF-QN Property (1)

Global balance vs. Local balance

— The equations: (rate in=rate out)

Vie S: Z Tigji = T Z qij

JjeS Jjes

with the normalizing condition: > ™ =1
iES

are called the
“Global Balance Equations”
— Global balance:

The transition rate out of a state of a QN =
transition rate into this state of the QN

— For so-called product-form QN exists
also a local balance:

The transition rate out of a state of a QN
due to a departure from node i = transition
rate into this state of this QN due to an
arrival to node i.

Dr. Xing QN(D) 37

Example

» Consider a closed QN with 3 nodes

i e

Number of customers m=2
— Service time exponentially distributed with:

Iy =4/sec, My = /sec und 1y = 2/sec

— Scheduling discipline: FCFS
Transition probabilities:

P, =04,p,;=006,p, =p; =1

State space of the MC:
{(2,0,0), (0,2,0), (0,0,2), (1,1,0), (1,0, 1), (0,1, 1)}
where, state S=(n,,n,,n,): n, jobs in node 1, n, jobs

in node 2 and n, jobs in node 3

Find the steady-state probabilities #(n;,1,,7;)

Dr. Xing QN(D) 38
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State Transition Diagram

DN

f3pan P12
S3 papn S5 TiipLs p2po S4 wipia

H1P13 e
Hop2i

@D s6

Dr. Xing QN(D)

S2

Hapal Lapa
Hipis

39
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Global Balance Equations

 State transition diagram
;

[13p31 P12
S3 papn S5 Tapis  papn S4 piipra

Hip13 [z
Hapai

@D s6

Rate Out = Rate In

(1) m(2,0,0)(p1p12 + papas) = (1,0, 1) papss + 7(1, 1, 0)uapoy ,

(2) 7(0,2,0)popzy = 7(1,1,0)pyp12,

(3) m(0,0,2)pgpay = (1,0, Dpypyg s

(4) w(1,1,0)(p2par + papaz + prapaz) = 7(0,2,0)papar + 7(2,0,0)p1p1
+m(0,1,1) paps1

(5) m(1,0,1)(papar + papia + papas) = (0,0,2)peapay + m(0,1, 1) jtapay
+7(2,0,0)p1p13

(6) (0,1, 1) (papss + papar) = m(1,1,0)p1pis + w(1,0, 1) peipia .

Dr. Xing QN(D)
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M
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Local Balance Equations

+ State (1,1,0)

— Node 2: transition rate out of state (1,1,0)
due to a departure from node 2 =
transition rate into this state due to an
arrival to node 2.

(4) 7 (1,1,0): pa- par = 7(2,0,0)- ji1- p12

— Node 1
(4") m(1,1,0) gy (p1g + pra) = 70,1, 1) pge pag +7(0.2,0): prp- oy

— By adding these local balance equations, (4")
and (4'"), we get the global balance equation (4)
for state (1,1,0).

* The equations (1), (2), (3) are already local
balance equations!
— State (2,0,0), node 1 > Eq. (1)
— State (0,2,0), node 2 > Eq. (2)
— State (0,0,2), node 3 2 Eq. (3)

Dr. Xing QN(I) 41
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Local Balance Equations (Cont’d)

* The equations (5) and (6) can be split to
local balance equations similar to equation

(4)

5 m(1,0,1)p1(p12 + p1a) = 7(0,1,1)papar + 7(0,0,2)spar
5") 7(1,0,1)pspsr = 7(2,0,0)p1p1s,
6) (0,1, ) papay = w(1,0, 1) papaz
6") m(0, 1, 1) papar = 7 (1, 1,0)pu1pis

(5) + (5") = (5) und (6") + (6") = (6)
* (5): state (1,0,1), node 1
* (57): state (1,0,1), node 3
* (6): state (0,1,1), node 2
* (6"): state (0,1,1), node 3

Dr. Xing QN(D) 42
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Solution

 Steady state probabilities

7(1,0,1) = 7(2,0,0) L p 4 | 7(1,1,0) = 7(2,0,0)L p s |
o et T

2 2
L L

m(0,0,2) = m(2,0,0) (‘—l‘ma) , 7(0,2,0) =7(2,0,0) (‘—lplz) s
3 B2

2

A "
7(0,1,1) = 7(2,0,0)——p12p1z .

Hafts

* Normalizing condition leads to

2 2
p P13 P12 H1pP 1P H1pP12P13
7(2,0,0) = {1 + (— +—= 2 =2 )]
ns 2 I I 2pis

* Resulted steady-state probabilities:

3
p=§
e
e
[
>
Il

0.148, w(1,0,1) = 0.123,
0.165, w(0,1,1) = 0.198.

3
p=§
=
-
=
=
Il

» From these joint steady-state probabilities,
the marginal probabilities and performance
measures (L;, W,) can be calculated

Dr. Xing QN(D) 43

Hands-On Problem
* Consider a closed QN with 2 nodes

queue server queue server

— _1@—_Ill1&—

— Number of customers N=2
Service time exponentially distributed with:

My =4/sec  u, =3/sec

Scheduling discipline: FCFS
Transition probabilities:

=1 py=1

Draw the state transition diagram for this system

Find the global balance equations for each state

Find the local balance equations for each state

Find the joint steady-state probabilities for all

states

5. Find the mean number of customers in each
stage/node

6. Find the average time a customer spent in each

stage/node

=

Dr. Xing QN() 44
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Note!

* The local balance equations can be
solved much easier than the global
balance equations

— The rate at which jobs enter a single
node of the QN is equal to the rate at
which they leaves it

— Thus, local balance is concerned with a
local situation and reduces the
computational effort.

* The solution is still very complex for
greater QN.

Dr. Xing QN(D) 45

Product Form and Local Balance

* Local balance yields a solution with the
product-form property.

1 K
TRy, Ry ey Ny ) = EH 7;(n;)
i=1

— The steady-state probability for the state (n,, n,,
..., ) is the product of the marginal
probabilities 7z, (n ;) for the single nodes

— The normalizing constant G can be obtained
from the normalizing condition (sum of all
steady-state probabilities equals 1)

— For QN with product-form solution, the local
balance property holds.

A necessary and sufficient condition for the

existence of product form solutions is given

in the local-balance property.

Dr. Xing QN(D) 46
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PF-QN Property (2)

e M= M property (Markov implies Markov)

— A node (service center) has the M > M
property iff the node transforms a Poisson

arrival process into a Poisson departure process.
* Muntz has shown that a QN has a product
form solution if all nodes of the network
have the M = M property.
» If a node satisfies local balance, it must
have M = M property

LB

/N

PF M->M

Dr. Xing QN(D) 47

Next Topics

* Petri Nets Modeling

Things to Do

» Homework

+ Class project

Dr. Xing QN(D) 48
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