(a) $\mathrm{m} / \mathrm{m} / 1 / \mathrm{N}$ syikem with $N=2+1=3$ (cyptem Gpacty)

$$
\begin{aligned}
& \begin{aligned}
\lambda & =16 / \mathrm{sec} \quad \omega_{s}=50 \mathrm{~ms} \Rightarrow \mu=\frac{1}{\omega_{s}}=20 / \mathrm{sec} \\
& =0.05 \mathrm{sec} \\
\alpha & =\frac{\lambda}{\mu}=\lambda \cdot \omega_{s}=\frac{16}{20}=0.8 \\
\pi_{0} & =\frac{1-\alpha}{1-\alpha^{N+1}}=\frac{1-0.8}{1-0.8^{4}}=\frac{0.2}{1-0.40 .96}=0.338753 \\
\rho & =1-\pi_{0}=0.661247
\end{aligned}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\lambda_{\text {eff }} & =\lambda\left(1-P_{B}\right) \\
P_{B}=\pi_{A} & =\pi_{3}=\alpha^{3} \cdot \pi_{0}=0.8^{3} * \pi_{0}=0.173442 \\
\lambda_{\text {eff }} & =16 *\left(1-P_{B}\right)=13.22493
\end{aligned}
$$

(c)

state
0
rate in $=$ rate out

$$
\pi_{1} \cdot \mu=\lambda \cdot \pi_{0}
$$

1

$$
2
$$

$$
3
$$

$$
\begin{aligned}
\pi_{0} \cdot \lambda+\pi_{2} \cdot(\mu+\delta) & =(\lambda+\mu) \cdot \pi_{1} \\
\pi_{1} \cdot \lambda+\pi_{3} \cdot(\mu+2 \delta) & =(\lambda+\mu+\delta) \cdot \pi_{2} \\
\pi_{2} \cdot \lambda= & (\mu+2 \delta) \cdot \pi_{3}
\end{aligned}
$$

