(a)

(b) $\mathrm{m} / \mathrm{m} / \mathrm{z}$ system, $\lambda=40 / \mathrm{sec}, \omega_{s}=45 \mathrm{~ms}=0.045 \mathrm{soc}, c=2$

$$
p=\frac{\lambda}{\mu \cdot c}=\lambda \cdot \omega_{s} / c=40 * \cdot 0.45 / 2=0.9=90 \%
$$

(c)

$$
\begin{aligned}
\pi_{0} & =\left[\sum_{n=0}^{c-1} \frac{\alpha^{n}}{n!}+\frac{\alpha^{c}}{c!\left(1-\frac{\alpha}{c}\right)}\right] \\
& =\left[1+\frac{\alpha}{1}+\frac{\alpha^{2}}{2!(1-\rho)}\right]^{-1} \\
& =\left[1+\alpha+\frac{\alpha^{2}}{2(1-\rho)}\right]^{-1}
\end{aligned}
$$

$$
-1
$$

$$
\alpha=\frac{\lambda}{\mu}=1.8
$$

(*) at leest se of the seners

$$
=\left[1+1.8+\frac{1.8^{2}}{2 * 0.1}\right]^{-1}=\frac{1}{19}=0.05263
$$

$$
1-\pi
$$

(d)

$$
\begin{aligned}
\pi_{4} & =\frac{\alpha^{\prime \prime}}{c!c^{n-c}} \pi_{0} \quad n=4 \\
& =\frac{\alpha^{4}}{2!2^{2}} \pi_{0}=\frac{1.8^{4}}{8}=\pi_{0}=0.069063
\end{aligned}
$$

