## ECE560: Computer Systems Performance Evaluation <br> Homework \#6 Solution

## Problems:

1. Consider the GI/M/1 queueing systems, where the inter-arrival time $\tau$ has an Erlang-2 distribution with parameter $\lambda$ (refer to Chapter 3.2.6 about the Erlang- $k$ distribution, its LST is $A^{*}[\theta]=\left(\frac{k \lambda}{k \lambda+\theta}\right)^{k}$, here in the problem $k=2$ ), the service time is exponentially distributed with a mean of $1 / \mu$.
a) What is the steady-state probability that an arriving customer finds the system empty?
b) If $\lambda$ is 15 per hour and $\mu$ is 20 per hour, what is the probability that an arriving customer finds 4 customers in the system?
c) What is the average number of customers in the system?
d) What is the average waiting time of a customer in the queue of the system?

Note: The following derivation of LST is for your reference. You may use the LST given in the problem or textbook directly.

$$
\begin{aligned}
& \text { a) Sher. }{ }^{+1} \text { : find LST } A^{*}[\theta] \\
& \text { By } E_{q}(3.95) \text { on fit, the p.d.f. of Eulang-2 with pasumeterd } \\
& \text { is: } \\
& f(x)=\left\{\begin{array}{cc}
2 \lambda \cdot(2 \lambda x) e^{-2 \lambda x} & x>0 \\
0 & x \leqslant 0
\end{array}\right. \\
& \therefore A^{*}[\theta]=E\left[e^{-\infty x}\right]=\int_{-\infty}^{\infty} e^{-\theta x} f(x) d x \\
& =\int_{0}^{\infty}(2 \lambda)^{2} x e^{-2 \lambda x} \cdot e^{-9 x} d x \\
& =(=\lambda)^{2} \int_{0}^{\infty} x e^{-(s+2 \lambda) x} d x \\
& =(-\lambda)^{2} \int_{0}^{\infty} x \frac{d e^{-(\theta+\lambda) t}}{-(\theta+2 \lambda)} \\
& =\frac{(2 \lambda)^{2}}{-(\theta+2 \lambda)} \int_{0}^{\infty} \pi d e^{-(s+2 \lambda) \pi} \\
& \text { By } \int_{0}^{\infty} u d v=\left.u \nu\right|_{0} ^{\infty}-\int_{0}^{\infty} \gamma d u \text {, where } u=x, \nu=e^{-(\theta+2 \lambda) x} \\
& \text { we have: } \\
& \int_{0}^{\infty} x d e^{-(\theta+2 \lambda) x}=\left.\pi \cdot e^{-(\theta+2 x) x}\right|_{0} ^{\infty}-\int_{0}^{\infty} e^{-(\theta+2 \lambda) x} d \pi \\
& =0-\frac{\int_{0}^{\infty} e^{-(\theta+2 \lambda) x} d[-(\theta+2 \lambda) \pi]}{-(\theta+2 \lambda)} \\
& =\left.\frac{1}{\theta+2 \lambda} e^{-(s+2 \lambda) \pi}\right|_{0} ^{\infty} \\
& =-\frac{1}{\theta+2 \lambda}
\end{aligned}
$$

Hence:

$$
A^{*}[\theta]=\frac{(2 \lambda)^{2}}{-(\theta+2 \lambda)} \times \frac{1}{-(\theta+2 \lambda)}=\left[\frac{2 \lambda}{\theta+\lambda \lambda}\right]^{2}
$$

Alate: this result an be gencustitach to Erlang -k distribution.

$$
\begin{equation*}
A^{*}[\theta]=\left[\frac{k \lambda}{\theta+k \lambda}\right]^{k} \tag{7.5}
\end{equation*}
$$

Sept: by ter equation $1-\pi_{0}=A^{*}\left[\beta \pi_{0}\right]$, we have

$$
\begin{gathered}
1-\pi_{0}=\left(\frac{2 \lambda}{\mu \pi_{0}+\lambda \lambda}\right)^{2} \Rightarrow \\
\left(1-\pi_{0}\right)\left(\mu^{2} \pi_{0}^{2}+4 \lambda \mu \pi_{0}+4 \lambda^{2}\right)=4 \lambda^{2} \\
\mu^{2} \pi_{0}^{2}+4 \lambda \mu \pi_{0}+4 \lambda^{2}-\mu^{2} \pi_{0}^{3}-4 \lambda \mu \pi_{0}^{2}-4 \lambda^{2} \pi_{0}-\lambda \lambda^{2}=0
\end{gathered}
$$

Dividing by $\mu^{2}$ :

$$
\begin{aligned}
& \bar{\pi}_{0}^{2}+4 \rho \pi_{0}-\pi_{0}^{3}-4 \rho T_{0}^{2}-4 \rho_{0}^{2}=0 \\
& \pi_{0}\left[\pi_{0}+4 P-\pi_{0}^{2}-4 P \pi \cdot-4 l^{2}\right]=0 \\
& T_{0}^{2}+(4 p-1) \eta_{0}+4 p^{2}-4 p=0 \rightarrow\left\{\begin{array}{l}
a x^{2}+b f+c=0 \\
x=\frac{-b=\sqrt{b-4 a c}}{2 a}
\end{array}\right. \\
& \pi_{0}=\frac{1-41+\sqrt{\left(4(-1)^{2}-4\left(4 t^{2}-4!\right)\right.}}{2} \quad \because T_{0}>0 \\
& =-2 \rho+0.5+\sqrt{16 \rho^{2}-8 \rho+1-16 \rho^{2}+66} \rho / 2 \\
& =-2 \rho+0.5+\sqrt{5 \rho+1} / 2 \\
& =-2 p+0.5+\sqrt{2 p+0.25}
\end{aligned}
$$

$\therefore$ So,

$$
\pi 0=-2 p+0.5+\sqrt{2+0.25}
$$

b) $\lambda=15 / \mathrm{hr} \quad \mu=20 / \mathrm{hr} \Rightarrow \rho=\lambda / \mu=\frac{15}{20}=0.75$

$$
\begin{aligned}
\Rightarrow \pi_{0} & =-3 ?+0.5+\overline{-P+0.25} \\
& =0.321\}
\end{aligned}
$$

Because for $G_{1} / \mathrm{m} / 1$ systems, we here

$$
\pi_{n}=\pi_{0}\left(1-\pi_{0}\right)^{n}
$$

So :

$$
\pi_{4}=\pi_{0}\left(1-\pi_{0}\right)^{4}=0.06787
$$

c) $L=\frac{P}{T_{0}}=\frac{0.75}{0.3229}=2.3227$
d)

$$
\begin{aligned}
w a_{n} & =\frac{\left(1-\pi_{0}\right) \omega_{s}}{\pi_{0}}=\frac{(1-0.3229) * \frac{1}{20}}{0.3229} \\
& =0.1 .4847 \text { hour }
\end{aligned}
$$

2. Lili Malign, an analyst at Luigi's Contract Service, is considering the queue discipline to use for one of the main office systems. Lii modeled this system as an $\mathrm{M} / \mathrm{D} / 1$ queueing system with $\lambda=5$ customers per hour and $W s=9$ minutes. Help her calculate $L, W, L_{q}, W_{q}$ assuming
a) FCFS (First-come, first-served), and
b) LCFS (Last-come, first-served) non-preemptive queue discipline.

$$
\text { a., FCFS: } \begin{aligned}
\lambda & =5 / \text { harl }=\frac{5}{60} / \mathrm{min}=\frac{1}{12} / \mathrm{min} \\
w_{s} & =9 \mathrm{~min} \\
\therefore \quad \rho & =\lambda \cdot W_{s}=\frac{45}{60}=\frac{3}{4}
\end{aligned}
$$

(10) (2.5) each

Based on tie results of $\mathrm{m} / \mathrm{J} / \mathrm{i}$ discussed in class: (slide \# 2 in Queueing Systems. (IV))

$$
\begin{aligned}
& L=\frac{\rho(2-\rho)}{2(1-\rho)}=\frac{\frac{3}{4} \times \frac{5}{4}}{2 \times \frac{1}{4}}=\frac{15}{8} \\
& \omega=L / \lambda=\frac{15}{8} / \frac{1}{12}=\frac{45}{2} \mathrm{~min} \\
& \omega_{\xi}=\omega-\omega_{s}=\frac{45}{2}-9=\frac{-7}{2} \mathrm{~min} \\
& L_{q}=\omega_{G} \times \lambda=\frac{27}{2} \times \frac{1}{12}=\frac{27}{24}
\end{aligned}
$$

b) By Theorem 5.4.1 (part of it discoursed in class):

The performance massive $L, W, L q, W_{q}$ for $L C F S$ are the same as for the FCFS discipline because LCFS discipline does not consider customer service times or any mealie of them.
3. Jackson Theorem/Algorithm: Consider the following open queueing network:


Given that

- Number of nodes $K=4$
- Service times are exponentially distributed with

$$
\frac{1}{\mu_{1}}=0.1, \frac{1}{\mu_{2}}=0.4, \quad \frac{1}{\mu_{3}}=0.1, \quad \frac{1}{\mu_{4}}=0.15
$$

- The arrival to node 1 has Poisson pattern with rate $\lambda_{1}=5 \mathrm{jobs} / \mathrm{sec}$
- The inter-arrival time to node 2 is exponentially distributed with parameter $\lambda_{2}=2$ jobs $/ \mathrm{sec}$
- FCFS scheduling discipline is used for all nodes
- Transition probabilities are

$$
p_{13}=0.4, p_{14}=0.6, p_{24}=1, p_{43}=1
$$

Answer the following questions:
a) Find the average arrival rates to each node?
b) Find the following performance measures:
(1) Server utilization for each node
(2) Mean response time for each node
(3) Mean number of jobs at each node
(4) Mean overall response time of the system
(5) Marginal steady-state probabilities $\pi_{1}(1), \pi_{2}(2), \pi_{3}(3), \pi_{4}(4)$
c) Find the joint steady-state probability $\pi(1,2,3,4)$ ?
(1) Boced om the truffice equation $\Delta_{k}=\lambda_{k}+\sum_{j=1}^{k} \Lambda_{j} P_{i k}$, we have

$$
\begin{aligned}
& \Lambda_{1}=\lambda_{i}=\zeta \\
& \Delta_{z}=\lambda_{2}=2 \\
& \left.\begin{array}{l}
\Lambda_{3}=\Lambda_{1} \cdot P_{24}+\Lambda_{44}+P_{43}=0.4 \times 5+\Delta_{4} \\
\Lambda_{4}=\Delta_{1} \cdot P_{4}+\Lambda_{2} \cdot P_{4}=5 \times 0.6+2=5
\end{array}\right\} \begin{array}{ll}
\Rightarrow & \Lambda_{3}=7 . \\
& \Lambda_{3}=7=5
\end{array}
\end{aligned}
$$

(2) (a) server ufi[itarital):

$$
\begin{array}{ll}
P_{1}=\frac{\Lambda_{1}}{\mu_{1}}=5 \times 0.1=0.5, & P_{2}=\frac{\Lambda_{4}}{\mu_{2}}=2 \times 0.4=0.8 \\
P_{3}=\frac{\Lambda_{0}}{\mu_{3}}=7 \times * 1=0.7 & P_{4}=\frac{\Lambda_{4}}{\mu_{4}}=5 \times 0.15=0.75
\end{array}
$$

(10) pints

Fori=1,2,3.4, the stability candinan $P_{i} \leq 1$ is satisfied?
(b) mean responte firte:

$$
\begin{aligned}
& \overline{T_{1}}=\frac{1 / \mu_{1}}{1-\rho_{1}}=\frac{0.1}{1-0.5}=\frac{1}{5}-0.2 \\
& T_{x}=\frac{1 / \mu_{x}}{1-\rho_{4}} \equiv \frac{0.4}{1-0.8}=2 \\
& \overline{T_{3}}=\frac{1 / 4 x}{1-p_{3}}=\frac{0.1}{1-0.7}=\frac{1}{3} . \\
& T_{4}=\frac{1 \mu_{4}}{1-i_{4}}=\frac{0.1 \xi^{2}}{1-0.15}=0.6
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) Mean musker of jobs at enach notar: } \\
& k_{1}=\frac{f_{f}}{\operatorname{lem}_{2}}=\frac{0.5}{1-0.5}=1 \\
& \overrightarrow{k_{5}}=\frac{P_{3}}{\left\{-e_{5}\right.}+\frac{\left.p_{-}\right]}{1-7+T}=\frac{7}{3} \\
& { }^{n} \frac{k_{2}}{k_{2}}=\frac{p_{2}}{1-8}=\frac{0.8}{1-0.8}=4 \\
& \bar{k}_{4}=\frac{P_{4}}{1+1 P_{4}}=\frac{073}{1-0.75}=3
\end{aligned}
$$

(3). Miear veverle respense time of the gytien: Bajed on "the "superposidin propenty" of poissary prosest; the oreval avival rate of the fogem can be coldulutat hos:

$$
\lambda_{1}=\lambda_{1}+\lambda_{2}=7 \text { jobet } / \sec
$$

The venaje (foth) number if jobs in the sjftem with be:
\&y Litele's Law:

$$
\begin{aligned}
& \omega=\frac{\frac{3}{\lambda}}{\lambda}=\frac{h}{\lambda}=\frac{\frac{31}{3}}{7}=\frac{31}{21}=1,406
\end{aligned}
$$

2. Maryinal state proburibities,

$$
\begin{aligned}
& \pi_{1}(1)=\left(1-P_{1}\right) P_{1}=0.5 \times 0.5=0.25 \\
& \pi_{2}(2)=\left(1-P_{2}\right) \cdot P_{4}^{2}=0.2 \times 0.8^{2}=0.128 \\
& \pi_{3}(3)=\left(1-P_{3}\right) \cdot P_{3}^{3}=0.3 \times 0.7^{3}=0.1029 \\
& \pi_{4}(4)=\left(1-P_{4}\right) P_{4}^{4}=0.25 \times 0.75^{4}=0.079102
\end{aligned}
$$

3) Joint steally-state probs.

$$
\begin{aligned}
\pi(1,2,3,4) & =\pi_{1}(1) * \pi_{2}(2) * \pi_{3}(3) * \pi_{4}(4) \\
& =0.25 \times 0.128 * 0.1029 \times 0.078102 \\
& =0.00026
\end{aligned}
$$

